

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

166 South Service Road East, Oakville, Ontario

Client

Mr. Clarence Zichen Qian 166 South Service Inc. 1-90 Wingold Avenue Toronto, Ontario M6B 1P5

Project Number

BIGC-ENV-457B

Prepared By:

B.I.G. Consulting Inc. 12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4 T: 416.214.4880 www.bigconsultinginc.com

Date Submitted

November 14, 2022

Executive Summary

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of 166 South Service Inc. (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 166 South Service Road East, in Oakville, Ontario (the Site).

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04 (O.Reg.153/04), as amended.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in July 2022; and, to obtain soil and groundwater data to characterize the Site to support the filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consist of topsoil, concrete or asphalt at the ground surface, followed by clayey silt and silty sand fill material, underlain by clayey silt till underlain by shale bedrock.
- 2. As per the soil description in the borehole logs, medium/fine textured standards were applied.
- 3. Groundwater depths within the deep aquifer ranged between approximately 17.79 m and 18.64 m bgs and groundwater depths in the shallow aquifer ranged between approximately 1.96 m and 3.82 m bgs on September 30, 2022.
- 4. The soil analytical results indicated that all soil samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detect or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.
- 5. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, VOCs and PCBs analyses were either non-detect or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Conclusions and Recommendations

As no contaminants of concern are present at the Site in soil or groundwater, an RSC can be filed for the Site.

Table of Contents

1	Introduction	1
1.2	Legal Description and Property Ownership	1
1.3	Current and Proposed Future Uses	2
1.4	Applicable Site Condition Standards	2
2	Background Information	3
2.1	Physical Setting	3
2.2		
3	Scope of the Investigation	5
3.1	Overview of Site Investigation	5
3.2	Media Investigated	5
3.3	Phase One Conceptual Site Model	
3.4	Deviations from Sampling and Analysis Plan	.10
3.5	Impediments	.10
4	Investigation Method	.11
4.1	General	.11
4.2	Borehole Drilling	.11
4.3	Soil Sampling	.11
4.4	Field Screening Measurements	.12
4.5	Groundwater: Monitoring Well Installation	.12
4.6	Monitoring Well Development	.13
4.7	Groundwater Monitoring	.13
4.8	Monitoring Well Purging	.13
4.9	Field Measurements of Water Quality Parameters	
4.1	O Groundwater Sampling	.13
4.1	1 Sediment Sampling	.14
4.1	2 Analytical Testing	.14
4.1	3 Elevation Survey	.15
4.14	4 Quality Assurance and Quality Control Measures	
5	Review and Evaluation	
5.1	Geology	
5.2	Groundwater Elevations and Flow Direction	
5.3	Soil Texture	
5.4	Soil Field Screening	
5.5	Soil Quality	.20
5.6	Groundwater Quality	.21
5.7	Sediment Quality	
5.8	Quality Assurance and Quality Control Measures	.22
5.9	Phase Two Conceptual Site Model	.23
6	Summary of Findings	
7	Conclusions and Recommendations	.36
8	General Limitations	
9	References	.38

List of Appendices

Appendix A: Site Sampling and Analysis Plan (SSAP)
Appendix B: Analytical Tables
Appendix C: Borehole Logs
Appendix D: Conceptual Site Models
Appendix E: Survey Plan
Appendix F: Grain Size Analysis
Appendix G: Laboratory Certificates of Analysis

List of Attached Tables

Table 1: Areas of Potential Environmental Concern (APEC)

- Table 2: Summary of Soil Samples Submitted for Chemical Analyses
- **Table 3:** Monitoring Well Installation Details

 Table 4: Water Level Depths and Elevations

Table 5: Summary of Groundwater Samples Submitted for Chemical Analyses

List of Figures

Figure 1: Site Location Plan Figure 2: Site Layout and Utilities Plan

Figure 3: Phase Two Study Area and Potentially Contaminating Activities (PCAs)

Figure 4: Borehole/Monitoring Well Location Plan

Figure 5: Borehole/Monitoring Well Location Plan with Areas of Potential Environmental Concern (APECs)

Figure 6: Groundwater Contour Plan

Figure 7: Geologic Cross Section A-A'

Figure 8: Geologic Cross Section B-B'

Figure 9: PHC Concentrations in Soil

Figure 10: BTEX Concentrations in Soil

Figure 11: VOC Concentrations in Soil

Figure 12: PAH Concentrations in Soil

Figure 13: Metal Concentrations in Soil

Figure 14: EC and SAR Concentrations in Soil

Figure 15: PHC Concentrations in Groundwater

Figure 16: BTEX Concentrations in Groundwater

Figure 17: VOC Concentrations in Groundwater

Figure 18: PCB Concentrations in Groundwater

1 Introduction

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of 166 South Service Inc. (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 166 South Service Road East, in Oakville, Ontario (the Site).

The objective of the investigation was to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (O.Reg.153/04), as amended. It is BIG's understanding that the Client is planning on redeveloping the Site with three residential condominium buildings which is expected to have seven (7) levels of underground parking in the future, which would require a land use change and a Record of Site Condition (RSC). Contact information for the Client is provided in Section 1.2.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in November 2022 and, to obtain soil and groundwater data to characterize the Site to support the preparation of the filing of an RSC on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

1.1 Site Description

The Site is located south of South Service Road East in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 11,900 m² in size and is currently occupied by a single-storey commercial building (Site building). The Site building has a footprint of approximately 2,350 m² and occupies approximately 20% of the Site. The Site building was reportedly constructed in 1959. The Site building is currently occupied by Hikers Haven, Reno Max Lighting, and Eagle Speed Uniforms. A trailer and shipping container were located in the southeastern portion of the parking lot and the southern portion of the Site is covered in grass and is used as a playing field. The areas surrounding the Site building are covered with asphalt and vegetation is present along the northern property boundary. A Site layout plan is shown on Figure 2.

The Site is bound to the north by South Service Road East followed by the Queen Elizabeth Way, to the east by commercial properties, to the south by commercial properties, and to the west by commercial properties. The surrounding properties are shown on Figure 3.

1.2 Legal Description and Property Ownership

Site Details						
Municipal Addresses	166 South Service Road East, Oakville, Ontario					
Current Owners	166 South Service Inc., 166 South Service LP and 166 South Service GP Inc.					
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5					
Owner Contact Person	Mr. Emil Toma					
Legal Description	Part lot 14, Concession 3 Trafalgar, South of Dundas Street, as in 811940 except part 1 20R7001; Oakville/Trafalgar; together with an easement over part lot 14, Concession 3 Trafalgar South of Dundas Street, Parts 1, 2, 3, 4, 5 & 6 20R22099 as in HR1889581					
Property Identification Number (PIN)	24816-0049 (LT)					
Property Size	1.19 hectares (2.94 acres)					
Approximate Universal Transverse Mercator (UTM) coordinates	Zone: 17 Easting: 606238.42 Northing: 4812376.46 (1m, NAD83, QGIS)					

Refer to the table below for the Site identification information.

1.3 Current and Proposed Future Uses

At the time of the Phase Two ESA investigation, the Site was occupied by a single-storey commercial building (Site building). The site will be redeveloped for residential purposes with three (3) condominium building towers which is expected to have seven (7) levels of underground parking. Section 168.3.1 of the *Environmental Protection Act* does not prohibit the proposed future use of the Property. Current surrounding land uses is included in Figure 3.

1.4 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act', ("SGWS" Standards), (MECP). Tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites are provided in MECP. The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP are summarized as follows:

- a) Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- b) Table 2 applicable to sites with potable groundwater and full depth restoration;
- c) Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- d) Table 4 applicable to sites with potable groundwater and stratified restoration;
- e) Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- f) Table 6 applicable to sites with potable groundwater and shallow soils;
- g) Table 7 applicable to sites with non-potable groundwater and shallow soils;
- h) Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- i) Table 9 applicable to sites with non-potable groundwater that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e., surface and subsurface soil), thickness and extent of overburden material, (i.e., shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium/fine textured soil conditions.

For assessment purposes, BIG selected the MECP Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and medium/fine textured soil. The selection of this category was based on the following factors:

- a) More than two-thirds of the Site has an overburden thickness greater than 2 m.
- b) The Site is not located within 30 m of a surface water body or an area of natural significance.
- c) The soil at the Site has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.
- d) The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.
- e) The Site is supplied by the City of Oakville municipal drinking water system; however the Site is considered potable.

- f) The future land use of the Site is residential.
- g) The predominant soil type on the Site was considered to be medium/fine textured.
- h) There was no intention to carry out a stratified restoration at the Site.

2 Background Information

2.1 Physical Setting

The following physiographic, geological and soil maps were reviewed as part of this Phase Two ESA:

- a) Atlas of Canada Toporama Topographic Map, 2012 (Toporama).
- b) Ontario Base Map (OBM).
- c) Ontario Ministry of Northern Development and Mines website, Bedrock Geology of Ontario, 2011 MRD 126; and Paleozoic Geology of Southern Ontario, 2007 MRD 219 (KML format).
- d) Ontario Ministry of Northern Development and Mines website, Surficial Geology of Southern Ontario, 2010 (KML format).
- e) Ontario Ministry of Northern Development and Mines website, Physiography of Southern Ontario 2007 (KML format).

The following information was obtained from these maps:

- a) The Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the north are generally at higher elevation than the Site.
- b) No water bodies are located on the Site. The nearest water body is Sixteen Mile Creek located approximately 330 m southwest and Lake Ontario is located approximately 2.25 km southeast. The inferred groundwater flow direction is likely towards the south/southeast.
- c) The bedrock in the general area consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain formation, Billings Formation, Collingwood Member and Eastview Member.
- d) The surficial geology of the Site is described as Paleozoic bedrock.
- e) The physiography of the Site is within the Iroquois Plain characterized as shale plains.

2.2 Past Environmental Investigations

Previous environmental investigations have been conducted at the Site. The following environmental investigations were reviewed in support of this Phase Two ESA report:

- BIG (2021) Phase I Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G. Consulting Inc. May 10, 2021.
- 2. BIG (2021) Phase II Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G Consulting Inc. July 5, 2021.
- 3. BIG (2022) Phase One Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G. Consulting Inc. November 10, 2022.

A Brief summary of the investigations are included below:

BIG (2021) Phase I E	BIG (2021) Phase I Environmental Site Assessment						
Objective	Identify existing or former potential sources of environmental concern.						
Potential	Fill material of unknown quality is present on-Site						
environmental impacts identified	 A former auto service garage was located in the southeastern portion of the Site building. Two (2) fuel oil tanks were located on the northeastern portion of the property located at 125 Cross Avenue in 1967, located south adjacent. 						
	 A former auto centre was located at 125 Cross Avenue, located south adjacent. A former dry cleaner was located at 125 Cross Avenue, located south adjacent. 						

Objective	Obtain soil and groundwater data to characterize the Site.					
 Program Advance ten (10) boreholes (BH1 to BH10) to a maximum de bgs (BH1 to BH10). Instrument six (6) of the boreholes with a monitoring well MW4, MW6, MW8 and MW10). Soil samples were collected and submitted to the laboratory petroleum hydrocarbons (PHCs), benzene, toluene, ethyl xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) inorganics. Groundwater samples were collected and submitted to the analysis of PHCs, BTEX and VOCs. 						
Site Condition Standards	MECP (2011) Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for residential/parkland/institutional (RPI) property use with medium/fine textured soil.					
Stratigraphy	The stratigraphy at the Site consisted of topsoil or asphalt followed by clayey silt and silty sand fill material, underlain by clayey silt till underlain by shale bedrock.					
Groundwater	Groundwater levels ranged between 3.01 m and 18.28 m bgs on May 4, 2021.					
Soil Conditions	 Soil samples submitted for PHCs, BTEX, PAHs, metals and inorganics analysis were detected below the applicable MECP Table 2 SCS. 					
Groundwater Conditions	Groundwater samples submitted for PHCs, BTEX and VOCs analysis, were detected below the applicable MECP Table 2 SCS.					

BIG (2022) Phase Or	BIG (2022) Phase One Environmental Site Assessment					
Objective	Identify existing or former potential sources of environmental concern.					
Potential	• Former autobody in the southeastern portion of the Site building.					
environmental	• Fill material of unknown quality across the entire Site.					
impacts identified	• Use of de-icing salts for vehicular and pedestrian safety within the exterior					
	portions of the Site and the former autobody.					
	Transformers located at 125 Cross Avenue.					
	Former fuel oil tanks located at 125 Cross Avenue.					

3 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the APECs identified in BIG's Phase One ESA; and, to obtain soil and groundwater data to characterize the Site to support the filing of an RSC on the MECP's BESR.

3.1.1 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- a) Request public utility locating companies (e.g., cable, telephone, gas, hydro, water, sewer and storm water) to mark any underground utilities present at the Site;
- b) Advance a total of twelve (12) boreholes (BH1S, BH101 to BH105 and BH201 to BH206) up to a maximum depth of 31.24 m bgs;
- c) Instrument nine (9) boreholes as monitoring wells (MW1S, MW101, MW103, and MW201 to MW206);
- d) Collect representative soil samples for laboratory chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and inorganics.
- e) Develop the newly installed groundwater monitoring wells;
- f) Collect groundwater levels from the previously and newly installed monitoring wells;
- g) Collect groundwater samples from the previously and newly installed monitoring wells for laboratory chemical analysis of PHCs, BTEX, VOCs and polychlorinated biphenyls (PCBs);
- h) Complete an elevation survey of all newly installed monitoring wells to determine the groundwater flow direction in the overburden aquifer beneath the Site;
- i) Analyze the data and prepare a report of the findings.

3.2 Media Investigated

The focus of the Phase Two ESA was on the environmental conditions of the surficial topsoil, overburden materials and groundwater beneath the Site. As there was no surface water body on the Site, no sediment sampling was required.

A copy of the Site Sampling and Analysis Plan (SSAP) prepared for the Site is provided in Appendix A.

3.3 Phase One Conceptual Site Model

This section presents the Phase One Conceptual Site Model (P1CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, and the presence and distribution of potential contaminants of concern. These components are discussed in the following sections.

The Site is located south of South Service Road East in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 11,900 m² in size and is currently occupied by a single-storey commercial building (Site building). The Site building has a footprint of approximately 2,350 m² and occupies approximately 20% of the Site. The Site building was reportedly constructed in 1959. The Site building is currently occupied by Hikers Haven, Reno Max Lighting, and Eagle Speed Uniforms. A trailer and shipping container were located in the southeastern portion of the parking lot and the southern portion of the Site is covered in grass and is used as a playing field. The areas surrounding the Site building are covered with asphalt and vegetation is present along the northern property boundary. A Site layout plan is shown on Figure 2.

The legal description of the Site as obtained from the chain of title is Part lot 14, Concession 3 Trafalgar, South of Dundas Street, as in 811940 except part 1 20R7001; Oakville/Trafalgar; together with an easement over part lot 14, Concession 3 Trafalgar South of Dundas Street, Parts 1, 2, 3, 4, 5 & 6 20R22099 as in HR1889581. The Property Identification Number (PIN) is 24816-0049 (LT). A legal survey plan is included in Appendix B.

The approximate Universal Transverse Mercator (UTM) coordinates for the Site centroid was NAD83 17-4812376.46 m N, 606238.42 m E. The UTM coordinates are based on measurements obtained from QGIS. The accuracy of the centroid is estimated to be 1 m.

Potentially Contaminating Activities

The Phase One ESA conducted by BIG in 2022 identified PCAs based on a groundwater flow direction towards the south/southeast. The water levels collected from across the Site during the BIG Hydrogeological Investigation and BIG Phase Two ESA determined that the local groundwater flow direction is actually flowing toward the southwest. The change in groundwater flow direction did not change the PCAs that were determined to be contributing to an APEC on-Site in the Phase One ESA. Four (4) PCAs in total were determined to be contributing to an APEC.

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
1.		Former Autobody Shop (PCA#10 – Commercial Autobody Shops)			On-Site
2.	166 South Service Road East	Importation of Unknown Fill (PCA#30 – Importation of Fill Material of Unknown Quality)	On-Site	Yes	
3.		Usage of de-icing salts (PCA"Other" – Usage of de- icing salts)			
4.	125 Cross Avenue	Transformers (PCA#55 – Transformer, Manufacturing, Processing and Use)	Off-Site (5 m southwest)	Vec	Close
5.	125 Cross Avenue	Former Fuel Oil Tanks (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Yes Off-Site (30 m southwest)		proximity
6.	125 Cross	Former Auto Centre (PCA#10 – Commercial Autobody Shops)	Off-Site		Located
7.	125 Cross Avenue	Former Dry Cleaner (PCA#37 – Operation of Dry Cleaning Equipment (where chemicals are used))	(95 m southwest)	No	Located downgradient
8.	165 Cross Avenue	Former Commercial Printer (PCA#31 – Ink Manufacturing, Processing and Bulk Storage)	Off-Site (southeast adjacent)	No	Inferred trans- gradient

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale	
9.	185 Cross Avenue	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (55 m east)	No	Inferred trans- gradient	
10.		Former Tannery (PCA#53 – Tannery)	(,		0. 401011	
11.	580 Argus Road	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (55 m northeast)	No	Inferred trans- gradient	
12.	572 Argus Road	Former Sheet Metal Shop (PCA#33 – Metal Treatment, Coating, Plating and Finishing)	Off-Site (60 m east)	No	Inferred trans- gradient	
13.		Former Sheet Metal Shop (PCA#34 – Metal Fabrication)				
14.	Former and Existing 570 Argus Autobody Shops		Off-Site (60 m east)	No	Inferred trans- gradient	
15.	Sign Manufacturing 117 Cross (PCA#31 – Ink Avenue Manufacturing, Processing and Bulk Storage)		Off-Site (60 m southeast)	No	Located downgradient	
16.	155 North Service Road East	155 North20 L of Gasoline SpillService(PCA#"Other" – Gasoline		No	Located at a significant distance	
17.	187 Cross Avenue	Former Dry Cleaners (PCA#37 – Operation of Dry Cleaning Equipment (where chemicals are used))	Off-Site (95 m east)	No	Inferred trans- gradient	
18.	99 Cross Avenue	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (95 m southwest)	No	Located downgradient	
19.	Former Foundry		Off-Site (155 m southeast)	No	Located downgradient	
20.	142 Cross Avenue	(PCA#33 – Metal Treatment, (170 m No		No	Located downgradient	
21.	136 Cross Avenue	Former Metal Parts Manufacturer (PCA#33 – Metal Treatment, Coating, Plating and Finishing)	Off-Site (190 m south)	No	Located downgradient	

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
22.		Former Metal Parts Manufacturer (PCA#34 – Metal Fabrication)			
23.	218 Cross Avenue	Former AST and UST (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (210 m east)	No	Inferred trans- gradient
24.	539 Lyons	Power Station (PCA#18 – Electricity Generation, Transformation and Power Stations)	Off-Site	No	Located
25.	Lane	Power Station (PCA#55 – Transformer Manufacturing, Processing and Use)	(250 m south)	No	downgradient
26.	570 Trafalgar Road	570 Trafalgar Associated Products Storage		No	Located at a significant distance

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.

The identification of the PCAs both on-Site and off-Site within the Phase One study area are shown on Figure 3. Based on the rationale provided, it is the opinion of the Qualified Person (QP) that four (4) PCAs are considered APECs at the Site. Further discussion is provided below.

Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, three (3) APECs were identified, as presented below:

APEC	Location of APEC on Phase One Property	ΡርΑ	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Former autobody shop	Southeastern portion of Site building	#10 – Commercial Autobody Shops	The autobody shop that used to be on-Site could have leaked COCs to the ground surface during repairs. The former autobody had an oil-water separator and a hydraulic hoist.	On-Site	PHCs, BTEX and VOCs	Soil and Groundwater

						NA - 11
APEC	Location of APEC on Phase One Property	PCA	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 2: Importation of fill material	Entire Site	#30 – Importation of Fill Material of Unknown Quality	Fill material of unknown quality was identified on-Site. As the quality of the fill was unknown, it could be contaminated.	On-Site	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 3: Use of de- icing salts	Asphalted portion of the Site and within the former autobody	"Other" – Usage of De- icing Salts	De-icing salt were used during the winter months on the exterior portion of the Site and within the entrance of the autobody shop for vehicular and pedestrian safety during the winter months	On-Site	Electrical Conductivity and SAR	Soil
APEC 4: Transformer	Southwestern portion	#55 - Transformer, Manufacturing, Processing and Use	The off-Site transformers located approximately 5 m southwest of the Site may have leaked	Off-Site	PCBs	Groundwater
APEC 5: Former fuel oil tanks	Southwestern portion	#28 – Gasoline and Associated Products Storage in Fixed Tanks	Fuel oil tanks were formerly located off-Site at 125 Cross Avenue approximately 30 m southwest of the Site. The fuel oil tanks may have leaked	Off-Site	PHCs and BTEX	Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

PHCs = petroleum hydrocarbons; BTEX = benzene, toluene, ethylbenzene and toluene; VOCs = volatile organic compounds; PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; As = arsenic, Sb = antimony, Se = selenium; Cr (VI) = chromium hexavalent; Hg = mercury; B-HWS = boron hot water soluble; CN- = cyanide; SAR = sodium adsorption ratio

The physiography of the Site is within the Iroquois Plains characterized as shale plains. The surficial geology of the Site is described as Paleozoic bedrock. The bedrock in the general area consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain formation, Billings Formation, Collingwood Member and Eastview Member.

Based on the review of the OBM and Toporama map, the Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the north are generally at higher elevation than the Site.

There are no water bodies located on the Site. The nearest water body is Sixteen Mile Creek located approximately 330 m southwest and Lake Ontario is located approximately 2.25 km southeast. The inferred groundwater flow direction is likely towards the south/southeast.

Based on the review of available resources from ERIS, Ontario Ministry of Natural Resources (MNR), Natural Heritage Information Centre (NHIC), no areas of natural significance were identified at the Site or within the Phase One study area.

The Site utilities and services that were identified at the Site based on the relevant utility infrastructure observed during the Phase One ESA conducted by BIG in 2022 are summarized in the table below. It is noted that the precise underground location of the utilities cannot be determined without professional locate services.

Utility	Source	Location	Site Entry
Storm Sewer	Municipality – Town of Oakville	Northwest	A drainage ditch is located northwest of the Site, along South Service Road East.
Sanitary Sewer	Municipality – Halton Region	Northwest	Given that the Site is located in a mixed commercial area, the sanitary sewer lines are anticipated to run along South Service Road East.
Water	Municipality – Halton Region	Northwest	Given that the Site is located in a mixed commercial area, the water lines are anticipated to run along South Service Road East.
Natural Gas	Enbridge Gas	Northwest	A natural gas meter was observed southwest of the Site building. Given that the Site is located in a commercial area, the natural gas lines are anticipated to run along South Service Road East.
Electricity	Oakville Hydro	Southwest	An overhead hydro line was observed along the southwestern Site boundary and enters the building underground on the southwestern side.

3.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the SSAP, shown in Appendix A. No deviations from the SSAP were reported, which affected the sampling and data quality objectives for the Site.

3.5 Impediments

The entire Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.

4 Investigation Method

4.1 General

The Site investigative activities consisted of the drilling of twelve (12) boreholes to facilitate the collection of soil samples for geologic characterization and chemical analysis; and the installation of monitoring wells for hydrogeologic property characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the surficial fill and overburden soils by a licensed drilling company under the full-time supervision of BIG staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities. Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg.903) using manufactured well components (i.e., riser pipes and screens) and materials (i.e., sand pack and grout) from documented sources.

4.2 Borehole Drilling

Prior to the commencement of drilling activities, the locations of underground utilities including cable, telephone, natural gas, electrical lines, as well as water, sewer, storm water and sanitary lateral conduits were marked out by public locating companies. In addition, a private utility locating service was also retained to clear the individual borehole locations.

The fieldwork for the soil investigative portion of the Phase Two ESA was carried out between April 27, 2022, May 9, 2022, and September 29, 2022.

The interior boreholes were advanced by Kodiak Drilling under full-time supervision of BIG staff using a Mini Mole drill to a maximum depth of 6.1 m bgs. The exterior boreholes were advanced by TCI Field Services under full-time supervision of BIG staff using a truck mount power to a maximum depth of 31.24 m bgs to sufficiently assess the APECs identified in the Phase One ESA. The approximate locations of the boreholes and monitoring wells are shown on Figure 4.

BIG continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered at regular intervals using a stainless-steel split spoon sampler in all boreholes.

4.3 Soil Sampling

Soil samples for geologic characterization and chemical analysis were collected on a discrete basis in the overburden materials using 5 cm diameter, 60 cm long, split spoon samples advanced into the subsurface using the Mini Mole drill for the interior boreholes and a track mounted power probe for the exterior boreholes. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by BIG field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory Bureau Veritas (BV) of Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to BV following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. Drill cuttings were placed in labeled, sealed drums upon completion of sampling. Nine (9) of the boreholes that were advanced were installed with monitoring wells (MW1S, MW101, MW103, and MW201 to MW206).

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, sample location and depth interval.

Geologic details of the soil cores recovered from the boreholes advanced at the Site are provided in boreholes logs presented in Appendix C.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH101-SS4	DUP1014	Metals and Inorganics
BH103-SS1	DUP1031	PAHs

Two (2) duplicate soil samples were collected for QA/QC purposes as summarized below.

4.4 Field Screening Measurements

A portion of each soil core was placed in a sealed "Ziploc[®]" plastic bag and allowed to reach ambient temperature prior to field screening using a MiniRae 3000 Photo Ionization Detection (PID) instrument, calibrated with isobutulene gas. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis.

The field screening measurements, in parts per million (ppm) isobutylene equivalents, are presented on the borehole logs in Appendix C.

Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling.

4.5 Groundwater: Monitoring Well Installation

Nine (9) boreholes were instrumented with groundwater monitoring wells at the Site (MW1S, MW101, MW103, and MW201 to MW206). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903/90 - amended to O.Reg.128/03 and were installed by a licensed well contractor.

All monitoring wells consisted of a 3 m length, 32 mm diameter PVC screen, and an appropriate length of PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O.Reg.128/03. Monitoring well completion details are summarized in Table 3.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- a) The use of well pipe components (e.g., riser pipe and well screens) with factory machine threaded flush coupling joints;
- b) Construction of wells without the use of glues or adhesives;

- c) Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces;
- d) Cleaning of augers between sampling locations; and,
- e) The use of hollow stem augers to prevent loose and potentially contaminated material in overlying layers from sloughing into the boreholes and coming into contact with groundwater.

4.6 Monitoring Well Development

Upon completion of monitoring well installation, the new monitoring wells were developed to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The monitoring wells were developed on May 19, October 3 and November 8, 2022 using dedicated bailers to disturb the water column and recover groundwater containing dislodged sediment particles.

4.7 Groundwater Monitoring

Groundwater monitoring activities, which consisted of measuring the depths to groundwater in each monitoring well, were conducted on newly installed monitoring wells so that groundwater flow and direction below the Site could be assessed and groundwater samples can be collected. These groundwater monitoring activities were conducted on May 19, May 31 and September 30, 2022. Water levels were measured with respect to the top of casing by means of an electronic water level meter. The water level measurements were recorded on water level log sheets or in a bound field notebook. The water level meter probe was decontaminated between monitoring well locations.

4.8 Monitoring Well Purging

Monitoring wells were purged prior to groundwater sample collection. Approximately three (3) wetted well volumes of water were purged from each well to remove standing water and draw in fresh formation water. Water levels and wetted well volumes were determined by means of an electronic water level meter.

Well purging was monitored by taking field measurements of turbidity, redox, pH, specific conductance and temperature and water level for every standing well (i.e., wetted casing) volume removed. Well purging continued until the purged water had chemically stabilized as indicated by field parameter measurements, and the water was of sufficient clarity as indicated by turbidity measurements. The groundwater was considered to be chemically stable when the pH measurements of three (3) successive purge well volumes agreed to within \pm 1 pH units, the specific conductance within \pm 10%, and turbidity \pm 10% of the average value of the three readings with the temperature within \pm 3%. Field parameters including pH, conductivity and temperature were monitored during monitoring well purging using a Hanna HI 9829 multiparameter water quality meter. All development water was collected and stored on-Site in labeled, sealed containers.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were documented on a log sheet or in a bound hard cover notebook.

4.9 Field Measurements of Water Quality Parameters

Field parameters including pH, conductivity and temperature were monitored during well development using a Hanna HI 9829 multiparameter water quality meter.

4.10 Groundwater Sampling

Upon completion of purging, the newly installed monitoring wells MW101 and MW103 were sampled together with the previously installed wells MW1, MW2, and MW8 on May 19, 2022. MW1S was sampled

on October 3 and November 8, 2022. Recommended groundwater sample volumes were collected into laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. The groundwater samples were transported to BV under Chain of Custody protocols, within 24 hours of sample collection or approved holding times.

4.11 Sediment Sampling

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA.

4.12 Analytical Testing

All analytical testing was performed by BV, which is accredited under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. 15025) in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories".

4.12.1 Soil Sampling

Representative soil samples from each borehole were selected for laboratory analysis based on field screening results, sample location and depth interval. The requested laboratory analysis was based on the identified contaminants of concern. The representative soil samples selected for laboratory analysis, the rationale for each sample and the requested analyses are summarized below.

Soil	Rationale	Requested Analyses	Consultant
Sample ID	Rationale	Requested Analyses	consultant
BH1-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH2-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH3-SS2	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH4-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH5-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH6-SS1	APECs 2 + 3 characterization	Metals and Inorganics	BIG (2021b)
BH6-SS2	APEC 2 characterization	PAHs	BIG (2021b)
BH7-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH8-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH9-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH9-SS2	Site characterization	PHCs	BIG (2021b)
BH10-SS1	Site characterization	PHCs and BTEX	BIG (2021b)
BH10-SS4	Site characterization	рН	BIG (2021b)
BH101-SS1	APECs 1 - 3 characterization	PHCs, BTEX, PAHs, Metals and	BIG (2022)
BI1101-331	Ar EC3 1 - 5 characterization	Inorganics	DIG (2022)
BH101-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH101-SS4	Native material characterization	PAHs, Metals and Inorganics	BIG (2022)
BH102-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH102-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH103-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH103-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH103-SS4	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH104-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH104-SS2	Site characterization	PHCs, BTEX and VOCs	BIG (2022)

Table 2: Summary of Soil Samples Submitted for Chemical Analyses

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH105-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH201-SS1	APEC 3 characterization	EC and SAR	BIG (2022)
BH204-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH205-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2022)

4.12.2 Groundwater Sampling

Representative groundwater samples were submitted for specific chemical analysis based on the identified contaminants of concern. The representative groundwater samples selected for lab analysis, the rationale for each sample, and the required analyses are summarized below.

Monitoring Well ID	Rationale	Requested Analyses	Consultant
BH/MW1	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW1S	APECs 4 and 5 characterization	PHCs, BTEX and PCBs	BIG
BH/MW2	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW6	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW8	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW10	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW101	APEC 1 characterization	PHCs, BTEX and VOCs	BIG
BH/MW103	APEC 1 characterization	PHCs, BTEX and VOCs	BIG

Table 3: Summary of Groundwater Samples Submitted for Chemical Analyses

4.13 Elevation Survey

An elevation survey was conducted to obtain vertical control of the newly installed borehole and monitoring well locations. The ground surface elevations of each newly installed monitoring well and borehole location was surveyed relative to the geodetic benchmark. The ground surface elevations were surveyed by BIG personnel and referenced to the fire hydrant located at the northwest corner of the Site along South Service Road East with a published geodetic elevation of 106.58 m (asl). A summary of groundwater levels and elevations is provided below.

Monitoring Well ID	Ground Surface Elevation	Groundwater Level (m bgs)	Groundwater Elevation (m ASL)	Groundwater Level Monitoring Date
		6.25	98.54	May 4, 2021
BH/MW1	104.79	6.05	98.74	May 19, 2021
		6.09	98.70	May 31, 2022
BH/MW1S	104.79	1.96	102.83	September 30, 2022
	104.63	2.64	101.99	May 4, 2021
BH/MW2		2.69	101.94	May 19, 2021
BH/IVIVVZ		2.94	101.69	May 31, 2022
		2.95	101.68	September 30, 2022
BH3	105.12	-	-	-
		3.46	102.13	May 4, 2021
BH/MW4	/W4 105.59	3.29	102.30	May 19, 2021
		3.42	102.17	May 31, 2022

Table 4: Summary of Groundwater Levels and Elevations

Monitoring	Ground Surface	Groundwater	Groundwater	Groundwater Level
Well ID	Elevation	Level (m bgs)	Elevation (m ASL)	Monitoring Date
BH5	105.62	-	-	-
		3.39	102.27	May 4, 2021
		3.23	102.44	May 19, 2021
BH/MW6	105.67	3.30	102.36	May 31, 2022
	İ İ	3.32	102.35	September 30, 2022
BH7	105.80	-	-	-
		3.01	102.62	May 4, 2021
		2.55	103.08	May 19, 2021
BH/MW8	105.63	2.59	103.04	May 31, 2022
		2.56	103.07	September 30, 2022
BH9	105.46	-	-	-
		18.28	87.16	May 4, 2021
/		18.36	87.08	May 19, 2021
BH/MW10	105.44	18.48	86.96	May 31, 2022
		18.45	86.99	September 30, 2022
		3.58	102.46	May 19, 2021
BH/MW101	106.04	3.81	102.23	May 31, 2022
		3.82	102.22	September 30, 2022
BH102	106.04	-	-	-
		3.53	102.51	May 19, 2021
BH/MW103	106.04	3.75	102.29	May 31, 2022
·		3.69	102.35	September 30, 2022
BH104	105.71	-	-	-
BH105	105.24	-	-	-
	405 77	18.43	87.34	May 19, 2021
BH/MW201	105.77	18.59	87.18	May 31, 2022
		18.92	86.75	May 19, 2021
BH/MW202	105.67	18.66	87.01	May 31, 2022
		18.64	87.03	September 30, 2022
		18.12	87.43	May 19, 2021
BH/MW203	105.55	18.21	87.34	May 31, 2022
		18.20	87.35	September 30, 2022
		18.47	86.79	May 19, 2021
BH/MW204	105.26	18.59	86.67	May 31, 2022
		18.57	86.69	September 30, 2022
		18.19	86.81	May 19, 2021
BH/MW205	105.00	18.27	86.73	May 31, 2022
		18.25	86.75	September 30, 2022
		17.73	86.93	May 19, 2021
BH/MW206	104.66	17.78	86.88	May 31, 2022
211/11/1200		17.79	86.87	September 30, 2022

The elevation survey was completed using BIG's own Sokkia B40. The survey equipment was calibrated by BIG personnel prior to use.

4.14 Quality Assurance and Quality Control Measures

Quality Assurance/Quality Control (QA/QC) measures, as set out in the Sampling and Analysis Plan, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision and trip blanks were included to evaluate the potential for sample cross-contamination during handling and transport.

Borehole	Duplicate Sample Identification	Analytical Test Group	
BH101-SS4	DUP1014	Metals and Inorganics	
BH103-SS1	DUP1031	PAHs	

Two (2) duplicate soil samples were collected for QA/QC purposes as summarized below.

Two (2) duplicate groundwater samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group	
MW1S	DUP1S0	PCBs	
MW8	DUP080	PHCs, BTEX and VOCs	

There were no significant deviations from the SSAP.

5 Review and Evaluation

5.1 Geology

The soil investigation conducted at the Site consisted of the advancement of twelve (12) boreholes into the surficial soil and the underlying native materials to a maximum depth of 31.24 m bgs. Borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix C. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as revealed in the borehole logs, consists of topsoil or asphalt followed by clayey silt and silty sand fill material, underlain by clayey silt till underlain by shale bedrock.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections (Figures 7 and 8).

5.1.1 Surficial Material

An asphalt layer was encountered at BH4 to BH10, BH104, BH105 and BH201 to BH203. The asphalt ranged in thickness from 60 mm to 200 mm and was underlain by granular material ranging in thickness from 130 mm to 200 mm.

A concrete layer was encountered at BH101 to BH103, the concrete ranged in thickness from 150 mm to 170 mm.

A topsoil layer was encountered at BH1 to BH3, BH1S and BH204 to BH206. The topsoil layer ranged in thickness from 100 mm to 150 mm.

5.1.2 Fill Material

Fill material comprised of clayey silt and silty sand was encountered in all boreholes advanced at the Site and extended to depths ranging between 0.60 m to 1.50 m bgs. The fill material contained fragments of shale and topsoil inclusions.

5.1.3 Native Material

Clayey Silt Till

Below the fill material, a native glacial deposit of clayey silt till was observed in all boreholes at the Site. The clayey silt till layer extended to depths ranging from 1.5 m to 3.4 m bgs. Within this layer, occasional shale fragments were encountered

5.1.4 Bedrock

Below the clayey silt till, a highly weathered reddish brown and/or grey shale bedrock was encountered in all boreholes with the exception of shallow boreholes BH102 and BH105 and extended to the borehole termination depths. The shale bedrock unit was encountered at depths ranging from 1.5 m to 3.4 m bgs, with more than two-thirds (2/3) of the Site consisting of soil equal to or greater than 2 m in depth before the bedrock was encountered.

Refer to the geological cross sections in Figures 7 and 8 for an overview of the Site stratigraphy.

5.2 Groundwater Elevations and Flow Direction

The on-Site monitoring well network consists of a total of fifteen (15) monitoring wells advanced by BIG screened within the bedrock. Monitoring well screens were installed to assess both the shallow and deep aquifers present at the Site with five (5) monitoring wells installed within the shallow aquifer and nine (9) monitoring wells installed within the deep aquifer.

Groundwater depths within the deep aquifer ranged between approximately 17.79 m and 18.64 m bgs and groundwater depths in the shallow aquifer ranged between approximately 1.96 m and 3.82 m bgs on September 30, 2022.

Based on the topography and the distance of the Site to Lake Ontario, the inferred groundwater flow direction was considered to be to the south/southeast in the Phase One ESA. Based on the static water levels observed, the interpreted predominant deep groundwater flow was towards the southwest and the interpreted shallow groundwater flow was towards the northeast. The interpreted deep groundwater flow was used to determine if any off-Site PCAs were to be considered as APECs as the deep groundwater flow direction is consistent with the local groundwater flow towards Sixteen Mile Creek located approximately 330 m southwest of the Site. The interpreted deep groundwater flow direction is presented on Figure 6A and the interpreted shall groundwater flow direction is presented on Figure 6B.

5.2.1 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

i = Ah/As

Where,

i = horizontal hydraulic gradient;

Ah (m) = groundwater elevation difference; and,

As (m) = separation distance.

The horizontal hydraulic gradient in groundwater in the deep aquifer, based on groundwater measurements collected on September 30, 2022, was 0.014 m/m between BH/MW10 and BH/MW203 and 0.002 m/m between BH/MW204 and BH/MW205 with a geomean of 0.005 m/m. The horizontal hydraulic gradient in groundwater in the shallow aquifer, based on groundwater measurements collected on September 30, 2022, was 0.026 m/m between BH/MW103 and BH/MW101.

The vertical hydraulic gradient in groundwater, based on groundwater measurements collected on May 31, 2022, was 1.04 m/m in a downward direction (between BH/MW103 and BH/MW203).

5.2.2 Groundwater: Hydraulic Conductivity

Single Well Response Test (SWRT) analyses were conducted by BIG at select monitoring wells within the shallow and deep aquifers. In the deep aquifer, MW201 to MW206 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the deep aquifer ranged from 3.22×10^{-8} m/s and 1.02×10^{-5} m/s, with a geometric mean of 1.45×10^{-7} m/s. In the shallow aquifer, MW2, MW6 and MW8 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer, MW2, MW6 and MW8 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer ranged from 7.79×10^{-7} m/s and 2.13×10^{-6} m/s, with a geometric mean of 1.57×10^{-6} m/s.

5.3 Soil Texture

The native materials encountered, are comprised of clayey silt till. Five (5) soil samples from the fill and native materials were submitted for grain size analysis. Four (4) samples were found to be medium/fine textured. As a result, medium/fine textured standards were applied as part of this Phase Two ESA.

5.4 Soil Field Screening

All soil samples were submitted for chemical analyses based on field observations, location and depth.

5.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix F.

5.5.1 PHCs

The soil samples submitted for PHCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.1 for a summary of the soil results analyzed for PHCs.

5.5.2 VOCs

The soil samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.2 for a summary of the soil results analyzed for VOCs.

5.5.3 PAHs

The soil samples submitted for PAHs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.3 for a summary of the soil results analyzed for PAHs.

5.5.4 Metals

The soil samples submitted for metals analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.4 for a summary of the soil results analyzed for metals.

5.5.5 Inorganics

Electrical conductivity (EC) and sodium adsorption ratio (SAR) exceedances were identified in soil at the Site at BH/MW6, BH102 and BH/MW201. EC and SAR are not considered as contaminants of concern (COC) at the Site as under the newly amended O.Reg.153/04 (O.Reg.407/19) Section 49.1 (1), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS. It is noted that BH102 is located within the portion of the building where the former autobody was located, in close proximity to the garage door. As such, this portion of the Site will have had de-icing salts applied to the ground surface to safely drive cars in and out of the autobody during the winter months.

As de-icing salts were used at the Site for vehicular and pedestrian safety, EC and SAR are not considered as COCs in soil at the Site.

The remaining inorganic parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Table B.4 for a summary of the soil results analyzed for inorganics.

5.5.6 Chemical Transformation and Soil Contaminant Sources

No parameters were identified in soil in exceedance of the applicable MECP Table 2 SCS and as such it is not expected that any chemical transformation (i.e., presence of parent compounds and daughter products) has occurred on the property.

5.5.7 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining or sheen.

5.6 Groundwater Quality

Representative groundwater samples were collected from the newly installed interior monitoring wells and some of the previously installed monitoring wells to assess groundwater quality at the Site. Evidence of free product (i.e., visible film or sheen), and odour was not observed during well purging (noted in Section 5.6.6).

Analytical results summary tables are provided in Appendix B and copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix F.

5.6.1 PHCs

Groundwater samples submitted for PHCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.5 for a summary of the groundwater results analyzed for PHCs.

5.6.2 BTEX

Groundwater samples submitted for BTEX analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.6 for a summary of the groundwater results analyzed for BTEX.

5.6.3 VOCs

Groundwater samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.6 for a summary of the groundwater results analyzed for VOCs.

5.6.4 PCBs

Groundwater samples submitted for PCBs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.7 for a summary of the groundwater results analyzed for PCBs.

5.6.5 Chemical Transformation and Contaminant Sources

No parameters were identified in groundwater in exceedance of the applicable MECP Table 2 SCS and as such it is not expected that any chemical transformation (i.e., presence of parent compounds and daughter products) has occurred on the property.

5.6.6 Evidence of Non-Aqueous Phase Liquid

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour in groundwater.

5.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA did not include sediment sampling.

5.8 Quality Assurance and Quality Control Measures

QA/QC measures were taken during the field activities to meet the objectives of the sampling and QA plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and water table aquifer unit at the Site. QA/QC measures included:

- a) The collection of soil and groundwater samples following standard operating procedures;
- b) The implementation of decontamination procedures to minimize the potential for sample cross contamination;
- c) The collection of recommended analytical test group specific volumes into pre-cleaned laboratory supplied containers provided with necessary preservatives as required;
- d) Sample preservation in insulated coolers pre-chilled with ice and meeting holding time requirements;
- e) Sample documentation including Chain of Custody protocols; and
- f) The collection of QC samples.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*', dated March 9, 2004, amended as of July 1,2011. Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision.

Borehole	Duplicate Sample Identification	Analytical Test Group	
BH101-SS4	DUP1014	Metals and Inorganics	
BH103-SS1	DUP1031	PAHs	

Two (2) duplicate soil samples were collected for QA/QC purposes as summarized below.

Two (2) duplicate groundwaters sample were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group	
MW1S	DUP1S0	PCBs	
MW8	DUP080	PHCs, BTEX and VOCs	

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil samples, where quantifiable, showed that the results met analytical test group specific acceptance criteria. The overall assessment indicates that the soil samples were collected within an acceptable level of precision, and the data is acceptable quality for meeting the objectives of the Phase Two ESA.

The subcontract laboratory used during this investigation was BV. BV is accredited by the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. 15025) in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories".

Certificates of Analysis were received from BV reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the BV Certificates of Analysis are provided in

Appendix F. Review of the Certificates of Analysis prepared by BV Labs indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg.153/04.

The analytical program conducted by BV included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by BV. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, RPDs for laboratory duplicates and analyte concentrations for method blanks.

The BV QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by BV indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by AGAT are of acceptable quality and data qualifications are not required.

5.9 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.9.1 Introduction

The Site is located south of South Service Road East in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 11,900 m² in size and is currently occupied by a single-storey commercial building (Site building). The Site building has a footprint of approximately 2,350 m² and occupies approximately 20% of the Site. The Site building is currently occupied by Hikers Haven, Reno Max Lighting, Eagle Speed Uniforms and a charity shop (SAFETYNET Children and Youth Charities). A trailer and shipping container were located in the southeastern portion of the parking lot. The areas surrounding the Site building are covered with asphalt and vegetation is present in the southern portion of the Site and along the northern property boundary. The nearest water body is Sixteen Mile Creek located approximately 330 m southwest and Lake Ontario is located approximately 2.25 km southeast. A Site layout plan is shown on Figure 2.

Refer to the following table for the Site identification information.

Site Details	
Municipal Addresses	166 South Service Road East, Oakville, Ontario
Current Owner	166 South Service Inc., 166 South Service LP and 166 South Service GP
	Inc.
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5
Owner Contact Person	Mr. Emil Toma
Legal Description	Part lot 14, Concession 3 Trafalgar, South of Dundas Street, as in 811940
	except part 1 20R7001; Oakville/Trafalgar; together with an easement
	over part lot 14, Concession 3 Trafalgar South of Dundas Street, Parts 1,
	2, 3, 4, 5 & 6 20R22099 as in HR1889581

Table 1: Site Information

Site Details	
Property Identification Number (PIN)	24816-0049 (LT)
Property Size	1.19 hectares (2.94 acres)
Approximate Universal	Zone: 17
Transverse Mercator (UTM)	Easting: 606238.42
coordinates	Northing: 4812376.46
	(1m, NAD83, QGIS)

5.9.2 Potentially Contaminating Activities and Areas of Potential Environmental Concern

A Phase One ESA, in accordance with O. Reg. 153/04, as amended, has been conducted by BIG for the Site. The surrounding land use plan and PCAs identified On-Site and in the Phase One ESA Study Area are shown on Figure 2. A list of all PCA's identified at the Site and within the Phase One ESA Study Area are presented in Table 2. The interpreted deep groundwater contour plan (Figure 6A) was used to determine if an off-Site PCA was to be considered as an APEC.

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
1.		Former Autobody Shop (PCA#10 – Commercial Autobody Shops)			
2.	166 South Service Road East	Importation of Unknown Fill (PCA#30 – Importation of Fill Material of Unknown Quality)	On-Site	Yes	On-Site
3.		Usage of de-icing salts (PCA"Other" – Usage of de- icing salts)			
4.	125 Cross Avenue	Transformers (PCA#55 – Transformer, Manufacturing, Processing and Use)	Off-Site (5 m southwest)	Yes	Close proximity
5.	125 Cross Avenue	Former Fuel Oil Tanks (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (30 m southwest)		
6.	125 Cross	Former Auto Centre (PCA#10 – Commercial Autobody Shops)	Off-Site		Located
7.	Avenue	Former Dry Cleaner (PCA#37 – Operation of Dry Cleaning Equipment (where chemicals are used))	(95 m southwest)	No	downgradient
8.	165 Cross Avenue	Former Commercial Printer (PCA#31 – Ink Manufacturing, Processing and Bulk Storage)	Off-Site (southeast adjacent)	No	Inferred trans- gradient

Table 2: Potentially Contaminating Activities in the Phase One Study Area

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
9.	185 Cross Avenue	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (55 m east)	No	Inferred trans- gradient
10.		Former Tannery (PCA#53 – Tannery)	, ,		U U
11.	580 Argus Road	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (55 m northeast)	No	Inferred trans- gradient
12.	572 Argus Road	Former Sheet Metal Shop (PCA#33 – Metal Treatment, Coating, Plating and Finishing)	Off-Site (60 m east)	No	Inferred trans- gradient
13.	Nodu	Former Sheet Metal Shop (PCA#34 – Metal Fabrication)			gradient
14.	570 Argus Road	Former and Existing Autobody Shops (PCA#10 – Commercial Autobody Shops)	Off-Site (60 m east)	No	Inferred trans- gradient
15.	117 Cross Avenue	Sign Manufacturing (PCA#31 – Ink Manufacturing, Processing and Bulk Storage)	Off-Site (60 m southeast)	No	Located downgradient
16.	155 North Service Road East	20 L of Gasoline Spill (PCA#"Other" – Gasoline Spill)	Off-Site (90 m northwest)	No	Located at a significant distance
17.	187 Cross Avenue	Former Dry Cleaners (PCA#37 – Operation of Dry Cleaning Equipment (where chemicals are used))	Off-Site (95 m east)	No	Inferred trans- gradient
18.	99 Cross Avenue	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (95 m southwest)	No	Located downgradient
19.	148 Cross Avenue	Former Foundry (PCA#32 – Iron and Steel Manufacturing and Processing)	Off-Site (155 m southeast)	No	Located downgradient
20.	142 Cross Avenue	Former Metal Stamping Facility (PCA#33 – Metal Treatment, Coating, Plating and Finishing)	Off-Site (170 m southeast)	No	Located downgradient
21.	136 Cross Avenue	Former Metal Parts Manufacturer (PCA#33 – Metal Treatment, Coating, Plating and	Off-Site (190 m south)	No	Located downgradient

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
		Finishing)			
		Former Metal Parts			
22.		Manufacturer			
22.		(PCA#34 – Metal			
		Fabrication)			
23. 218 Cros		Former AST and UST (PCA#28 – Gasoline and	Off-Site (210 m	No	Inferred trans-
23.	Avenue	Associated Products Storage in Fixed Tanks)	east)	110	gradient
24.	539 Lyons	Power Station (PCA#18 – Electricity Generation, Transformation and Power Stations)	Off-Site	Ne	Located
25.	Lane	Power Station (PCA#55 – Transformer Manufacturing, Processing and Use)	(250 m south)	No	downgradient
26.	570 Trafalgar Road	Former Private Fuel Tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (250 m No northeast)		Located at a significant distance

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

The identification of the PCAs both on-Site and off-Site within the Phase One study area are shown on Figure 3.

Based on the rationale provided, it is the opinion of the Qualified Person (QP) that four (4) PCAs are considered APECs at the Site. Further discussion is provided below.

5.9.3 Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, four (4) APECs were identified, as presented below:

APEC	Location of APEC on Phase One Property	PCA	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Former autobody shop	Southeastern portion of Site building	#10 – Commercial Autobody Shops	The autobody shop that used to be on-Site could have leaked COCs to the ground surface during	On-Site	PHCs, BTEX and VOCs	Soil and Groundwater

Table 3: Areas of Potential Environmental Concern (APECs)

APEC	Location of APEC on Phase One Property	PCA	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
			repairs. The former autobody had an oil-water separator and a hydraulic hoist.			
APEC 2: Importation of fill material	Entire Site	#30 – Importation of Fill Material of Unknown Quality	Fill material of unknown quality was identified on- Site. As the quality of the fill was unknown, it could be contaminated.	On-Site	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 3: Use of de- icing salts	Asphalted portion of the Site and within the former autobody	"Other" – Usage of De- icing Salts	De-icing salt were used during the winter months on the exterior portion of the Site and within the entrance of the autobody shop for vehicular and pedestrian safety during the winter months	On-Site	Electrical Conductivity and SAR	Soil
APEC 4: Transformer	Southwestern portion	#55 - Transformer, Manufacturing, Processing and Use	The off-Site transformers located approximately 5 m southwest of the Site may have leaked	Off-Site	PCBs	Groundwater
APEC 5: Former fuel oil tanks	Southwestern portion	#28 – Gasoline and Associated Products Storage in Fixed Tanks	Fuel oil tanks were formerly located off-Site at 125 Cross Avenue approximately 30 m southwest of the Site. The fuel oil tanks may have leaked	Off-Site	PHCs and BTEX	Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

PHCs = petroleum hydrocarbons; BTEX = benzene, toluene, ethylbenzene and toluene; VOCs = volatile organic compounds; PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; As = arsenic, Sb = antimony, Se = selenium; Cr (VI) = chromium hexavalent; Hg = mercury; B-HWS = boron hot water soluble; CN- = cyanide; SAR = sodium adsorption ratio

Refer to Figures 4 and 5 for the Site plan illustrating the borehole/monitoring well locations and APECs and to Table 4 below for details on APEC characterization.

APEC	APEC Details	Media Potentially Impacted	Boreholes/ Monitoring Wells Advanced within APEC	Depth(s) of Soil Samples Submitted for Analysis (m bgs)	Well Screen Depth (m bgs)	Parameters Tested	Figure #
	The autobody		BH/MW101	0.76 – 1.37	3.05 – 6.10		
	shop that used		BH102	0.76 – 1.37	NA		
	to be on-Site			0.76 – 1.37			9, 10,
APEC 1	could have leaked COCs to the ground surface during repairs	Soil + Groundwater	BH/MW103	2.29 – 2.90	3.05 – 6.10	PHCs, BTEX and VOCs	11, 15, 16, and 17
			BH/MW1	0.0-0.61			
			BH/MW2	0.0-0.61	1		
			BH3	0.76 - 1.37		PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	
			BH/MW4	0.0-0.61			
			BH5	0.76 - 1.37			
			BH7	0.0-0.61	NA		
			BH/MW8	0.76 - 1.37			
	Fill material of		BH9	0.0-0.61			12 and
	unknown quality was identified	Soil	BH/MW101	0.0 - 0.61			13
	on-Site. As the			2.29 - 2.90			
APEC 2	quality of the fill		BH/MW102	0.0-0.61			
	was unknown, it		BH103	0.0 - 0.61			
	could be		BH104	0.0-0.61			
	contaminated		BH105	0.76 – 1.37			
	containinated		BH/MW204	0.0-0.61			
			BH/MW205	0.0 - 0.61			
			BH/MW6	0.0-0.61	NA	Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	13
				0.76 - 1.37		PAHs	12
	De-icing salt		BH/MW4	0.0-0.61			
	were used during the winter months		BH5	0.76 - 1.37			
		uring the	BH/MW6	0.0-0.61			
			BH7	0.76 - 1.37	†	Electrical	
APEC 3		Soil	BH/MW8	0.76 - 1.37	NA	Conductivit	14
			BH9	0.0-0.61		y and SAR	
	portion of the			0.0-0.61			
	Site and within		BH/MW101	2.29 - 2.90			
	the entrance of		BH/MW102	0.0-0.61			

Table 4: APECs Characterization Details

APEC	APEC Details	Media Potentially Impacted	Boreholes/ Monitoring Wells Advanced within APEC	Depth(s) of Soil Samples Submitted for Analysis (m bgs)	Well Screen Depth (m bgs)	Parameters Tested	Figure #
	the autobody		BH103	0.0-0.61			
	shop for		BH105	0.76 – 1.37			
	vehicular and		BH/MW204	0.0 - 0.61			
	pedestrian safety during the winter months		BH/MW205	0.0-0.61			
APEC 4	The off-Site transformers located approximately 5 m southwest of the Site may have leaked	Groundwater	BH/MW1S	-	3.05 – 6.10	PCBs	18
APEC 5	Fuel oil tanks were formerly located off-Site at 125 Cross Avenue approximately 30 m southwest of the Site. The fuel oil tanks may have leaked	Groundwater	BH/MW1S	-	3.05 – 6.10	PHCs + BTEX	15 and 16

5.9.4 Underground Utilities

A hydro pole is located on the western property boundary, one (1) hydro line extends east from the hydro pole where it then enters the Site building.

One (1) gas line enters the Site on the western property boundary, the gas line extends east where it then enters the Site building.

One (1) Bell line enters the Site on the western property boundary, the bell line extends east where it then enters the Site building.

5.9.5 Physical Site Description

The Phase Two CSM provides a narrative and graphical interpretation of the Site surface features, near surface geologic and hydrogeologic conditions, potential contaminants of concern, contaminant fate and transport mechanisms and relevant receptors and exposure pathways. These components are discussed in the following sections.

Surface Features

The northwestern portion of the Site surrounding the Site building is covered in asphalt and vegetation is present in the southern portion of the Site and along the northern property boundary.

Geologic Setting

Information on the overburden and bedrock geology of the general Site area was obtained during the

Phase One ESA. Based on the review, the following was summarized:

The Site is located in the physiographic region within the Iroquois Plains characterized as shale plains. The surficial geology of the Site is described as Paleozoic bedrock. The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member.

Based on the review of the OBM and Toporama map, the Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the north are generally at higher elevation than the Site.

Based on the review of available resources from ERIS, Ontario Ministry of Natural Resources (MNR), Natural Heritage Information Centre (NHIC) database, no areas of natural significance were identified at the Site or within the Phase One study area.

The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt, concrete or topsoil at the ground surface, underlain by fill material comprised of clayey silt and silty sand underlain by native material characterized by clayey silt till followed by shale bedrock.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections.

Surface Material

An asphalt layer was encountered at BH4 to BH10, BH104, BH105 and BH201 to BH203. The asphalt ranged in thickness from 60 mm to 200 mm and was underlain by granular material ranging in thickness from 130 mm to 200 mm.

A concrete layer was encountered at BH101 to BH103, the concrete ranged in thickness from 150 mm to 170 mm.

A topsoil layer was encountered at BH1 to BH3, BH1S and BH204 to BH206. The topsoil layer ranged in thickness from 100 mm to 150 mm.

<u>Fill</u>

Fill material comprised of clayey silt and silty sand was encountered in all boreholes advanced at the Site and extended to depths ranging between 0.60 m to 1.50 m bgs. The fill material contained fragments of shale and topsoil inclusions.

Clayey Silt Till

Below the fill material, a native glacial deposit of clayey silt till was observed in all boreholes at the Site. The clayey silt till layer extended to depths ranging from 1.5 m to 3.4 m bgs. Within this layer, occasional shale fragments were encountered.

<u>Bedrock</u>

Below the clayey silt till, a highly weathered reddish brown and/or grey shale bedrock was encountered in all boreholes with the exception of shallow boreholes BH102 and BH105 and extended to the borehole termination depths. The shale bedrock unit was encountered at depths ranging from 1.5 m to 3.4 m bgs, with more than two-thirds (2/3) of the Site consisting of soil equal to or greater than 2 m in depth before the bedrock was encountered.

Refer to the geological cross sections in Figures 7 and 8 for an overview of the Site stratigraphy.

Hydrogeologic Setting

Two (2) hydrostratigraphic units were encountered at the Site, both of which act as an aquifer.

The on-Site monitoring well network consists of a total of fifteen (15) monitoring wells advanced by BIG screened within the bedrock. Monitoring well screens were installed to assess both the shallow and deep aquifers present at the Site with six (6) monitoring wells installed within the shallow aquifer and nine (9) monitoring wells installed within the deep aquifer.

Groundwater depths within the deep aquifer ranged between approximately 17.79 m and 18.64 m bgs and groundwater depths in the shallow aquifer ranged between approximately 1.96 m and 3.82 m bgs on September 30, 2022.

Based on the static water levels observed, the interpreted predominant deep groundwater flow was towards the southwest and the interpreted shallow groundwater flow was towards the northeast. The interpreted deep groundwater flow was used to determine if any off-Site PCAs were to be considered as APECs as the deep groundwater flow direction is consistent with the local groundwater flow towards Sixteen Mile Creek located approximately 330 m southwest of the Site. The interpreted deep groundwater flow direction is presented on Figure 6A and the interpreted shall groundwater flow direction is presented on Figure 6B. Single Well Response Test (SWRT) analyses were conducted by BIG at select monitoring wells (MW201 to MW206). Estimates of the saturated hydraulic conductivity in the overburden ranged from 4.29×10-9 m/s and 3.89×10-5 m/s, with a geometric mean of 1.45×10-7 m/s.

Single Well Response Test (SWRT) analyses were conducted by BIG at select monitoring wells within the shallow and deep aquifers. In the deep aquifer, MW201 to MW206 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the deep aquifer ranged from 3.22×10^{-8} m/s and 1.02×10^{-5} m/s, with a geometric mean of 1.45×10^{-7} m/s. In the shallow aquifer, MW2, MW6 and MW8 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer, MW2, MW6 and MW8 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer ranged from 7.79×10^{-7} m/s and 2.13×10^{-6} m/s, with a geometric mean of 1.57×10^{-6} m/s.

The horizontal hydraulic gradient in groundwater in the deep aquifer, based on groundwater measurements collected on September 30, 2022, was 0.014 m/m between BH/MW10 and BH/MW203 and 0.002 m/m between BH/MW204 and BH/MW205 with a geomean of 0.005 m/m. The horizontal hydraulic gradient in groundwater in the shallow aquifer, based on groundwater measurements collected on September 30, 2022, was 0.026 m/m between BH/MW103 and BH/MW101.

The vertical hydraulic gradient in groundwater, based on groundwater measurements collected on May 31, 2022, was 1.04 m/m in a downward direction (between BH/MW103 and BH/MW203).

5.9.6 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in the table below:

Sensitivity	Classification	Does Sensitivity Apply to Site?
	(i) property is within an area of natural significance	No
Section 41	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
applies if	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
	(iv) soil at property has a pH value for surface soil less than 5 or greater	No

 Table 5: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
	than 9	
	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section	(i) property is a shallow soil property	No
43.1 applies if	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

5.9.7 Soil Importation

No soil importation has occurred on-Site.

5.9.8 Remediation

No remediation has occurred on-Site.

5.9.9 Previous Reports

BIG had previously conducted due diligence Phase I and Phase II Environmental Site Assessments and Hydrogeological and Geotechnical Investigations at the Site in 2021. No other previous reports were provided to BIG for review. The previous reports prepared by BIG were relied upon in the Phase Two ESA and Phase Two CSM.

5.9.10 Land Use

The Site is currently used for commercial purposes and is developed with one (1) slab-on-grade building occupying approximately 20 % on the Site. The site will be redeveloped for residential use with three (3) condominium tower buildings which is expected to have seven (7) levels of underground parking.

5.9.11 Contaminants of Concern

The MECP (2011a) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Land Use and medium/fine textured soils were considered applicable for determining contaminants of concern (COCs), based on the reasons presented below:

Descriptor	Site-Specific Condition
Section 41 Site Sensitivity	 Not applicable The soil at the Site has pH values between 5 and 9 for surficial soil; and, between 5 and 11 for subsurface soil. The Site is not located within, or adjacent to, an area of natural significance, or part of such an area; and, the Site does not include land that is within 30 m of an area of natural significance, or part of such an area.
Section 43.1 Site Sensitivity	Not applicable • The Site is not considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m; and,

Table 6: Site Condition Standards

Descriptor	Site-Specific Condition
	\circ The Site is not located within 30 m of a surface water body; the nearest water
	body is Sixteen Mile Creek located approximately 330 m southwest and Lake
	Ontario is located approximately 2.25 km southeast.
Section 35	Potable
Ground Water	\circ The Site is supplied by the City of Oakville municipal water system however the
Glound Water	Site is considered potable.
Land Use	Residential/Parkland/Institutional
Lanu Ose	\circ The future use of the Site will be residential land use.
	Medium/fine-textured
Soil Texture	 As per the soil description in the borehole logs, medium/fine textured standards were applied.
Soll Texture	$_{\odot}$ Five (5) soil samples from the fill and native materials were submitted for grain
	size analysis. Four (4) samples were found to be medium/fine textured. As a result,
	medium/fine textured standards were applied as part of this Phase Two ESA.

Based on the analytical results, no parameters were detected in soil or groundwater at concentrations in exceedance of the applicable SCS.

It is noted that electrical conductivity (EC) and sodium adsorption ratio (SAR) exceedances were identified in soil at the Site at BH/MW6, BH102 and BH/MW201. EC and SAR are not considered as contaminants of concern (COC) at the Site as under the newly amended O.Reg.153/04 (O.Reg.407/19) Section 49.1 (1), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS. It is noted that BH102 is located within the portion of the building where the former autobody was located, in close proximity to the garage door. As such, this portion of the Site will have had de-icing salts applied to the ground surface to safely drive cars in and out of the autobody during the winter months.

As de-icing salts were used at the Site for vehicular and pedestrian safety, EC and SAR are not considered as COCs in soil at the Site.

5.9.12 Contaminant Fate and Transport

Soil Media

No soil COCs were identified at the Site.

Groundwater Media

No groundwater COC were identified at the Site.

5.9.13 Preferential Pathways

Given that no COCs are present in soil or groundwater at the Site, there are no preferential pathways.

5.9.14 Climatic Conditions

Given that no COCs are present in soil or groundwater at the Site, the climatic or meteorological conditions are not a potential contaminant transport mechanism and is not considered further.

5.9.15 Soil Vapour Migration

Given that no COCs are present in soil or groundwater at the Site, soil vapour intrusion is not considered further.

5.9.16 Receptors and Exposure Pathways

Human Health Receptors and Exposure Pathways

As no COCs are present in soil or groundwater at the Site there are no complete human receptor exposure pathways at the Site.

Scenario	Receptor	Exposure Pathways	
	Adult		
Property Residents	(including pregnant female), Teen, Child,	none	
	Toddler, Infant		
Workers – Long Term (indoor)	Adult	nono	
Workers – Long Term (mabor)	(including pregnant female)	none	
Workers – Short Term (outdoor)	Adult	nono	
workers – short rerni (outdoor)	(including pregnant female)	none	
	Adult		
Property Visitor - Recreational	(including pregnant female), Teen, Child,	none	
	Toddler, Infant		
	Adult		
Property Visitor - Trespassers	(including pregnant female), Teen, Child,	none	
	Toddler, Infant		
Workers –	Adult	2020	
Construction/Remediation	(including pregnant female)	none	

The human health conceptual on-Site model is included in D.1 in Appendix D.

Ecological Receptors and Exposure Pathways

As no COCs are present in soil or groundwater at the Site there are no complete ecological receptor exposure pathways at the Site.

Primary Source	Secondary Source Receptor		Exposure Pathway
		Vegetation	none
	Impacted soil/air	Soil invertebrates	none
Impacted soil		Animals	none
	Impacted	Soil invertebrates	none
	plant/animal tissue	Terrestrial birds and mammals	none

The ecological health conceptual on-Site model is included in Figure D.2 in Appendix D.

6 Summary of Findings

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consist of topsoil or asphalt followed by clayey silt and silty sand fill material, underlain by clayey silt till underlain by shale bedrock.
- 2. As per the soil description in the borehole logs, medium/fine textured standards were applied.
- 3. The groundwater depths across the entire Site ranged between approximately 2.94 m and 18.66 m bgs on May 31, 2022.
- 4. The soil analytical results indicated that all soil samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.
- 5. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, and VOCs analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

7 Conclusions and Recommendations

As no contaminants of concern are present at the Site in soil or groundwater, an RSC can be filed for the Site.

8 General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

This report was prepared for the exclusive use of the Client and may not be reproduced in whole or in part, without the prior written consent of BIG, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. BIG. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Yours truly,

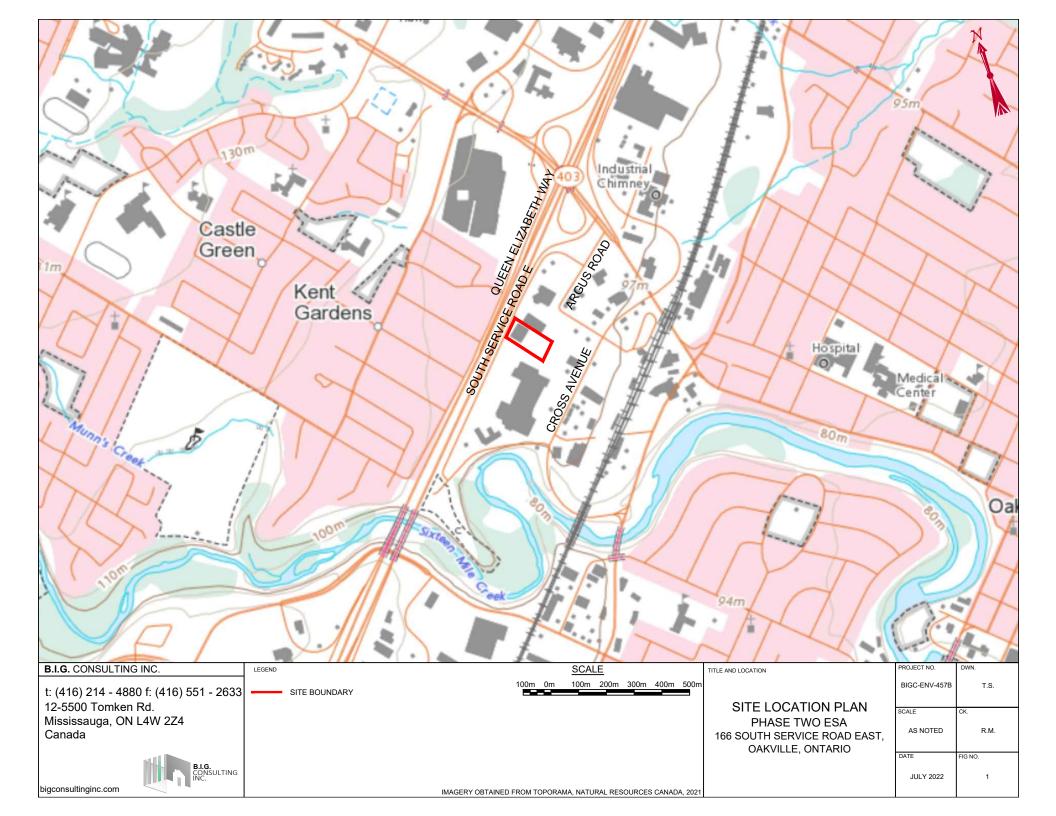
B.I.G. Consulting Inc.

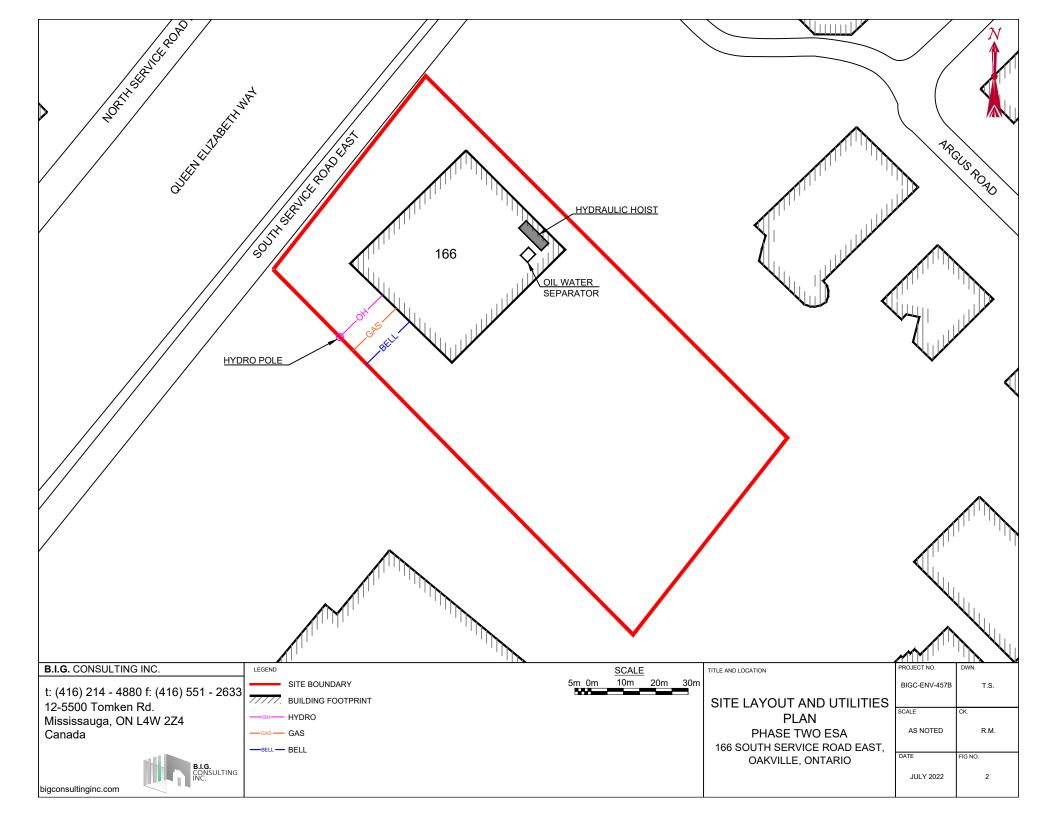
Rebecca Morrison, M.Env.Sc. Project Manager

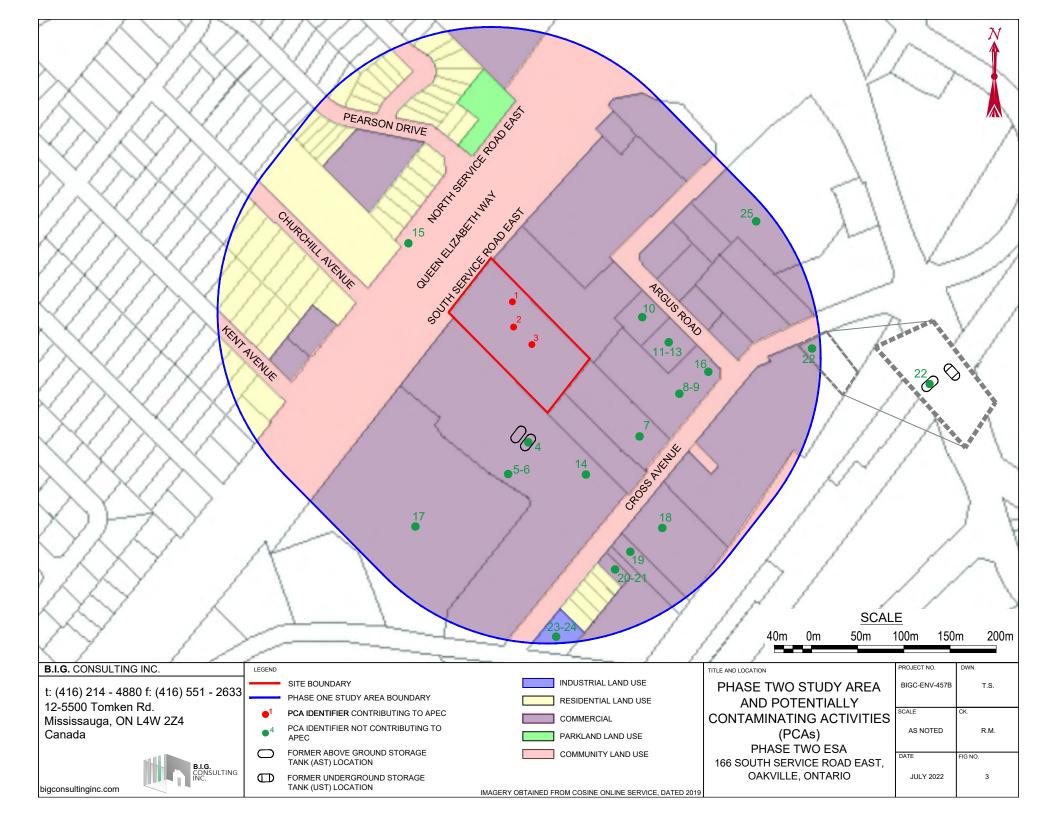
Darko Strajin, P.Eng., QP_{ESA} Managing Partner

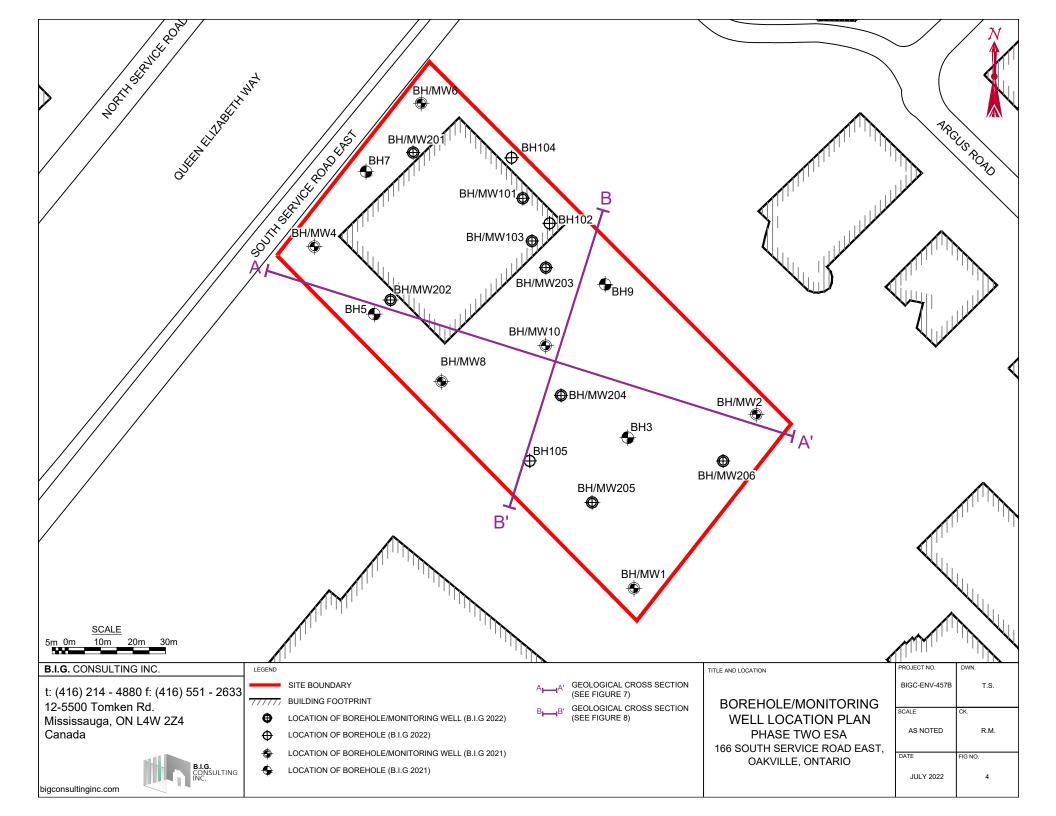
9 References

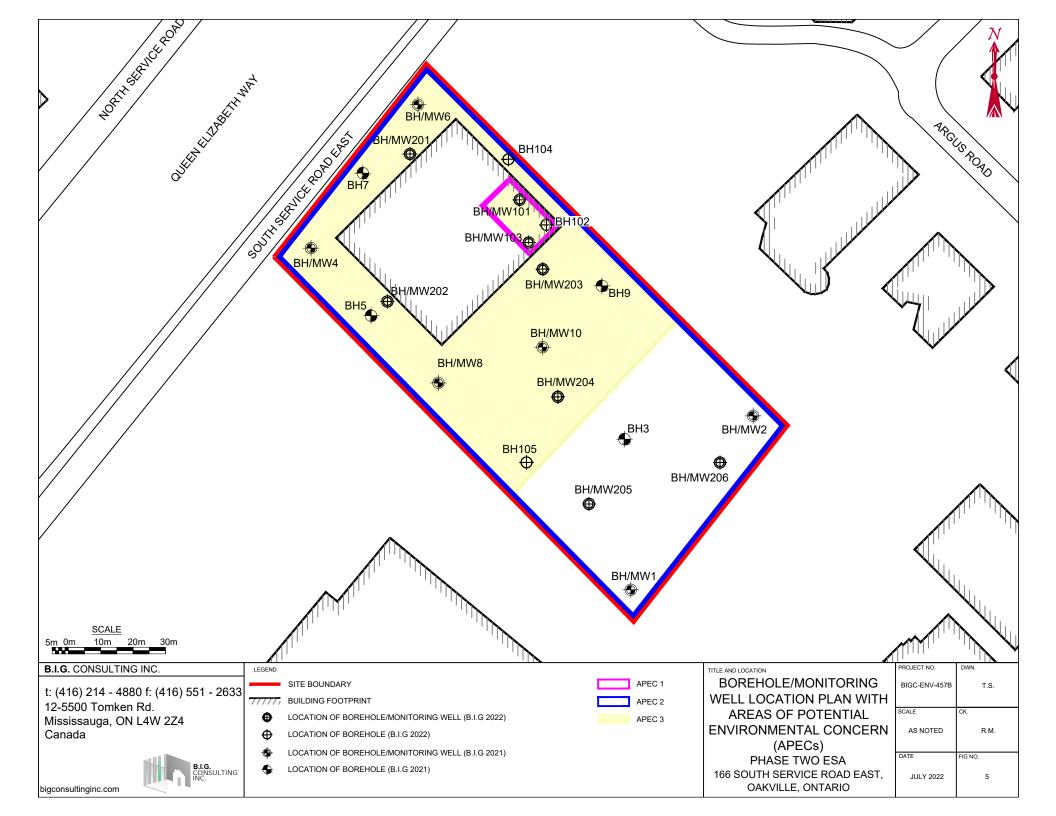
- 1. MECP (2011a) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*";
- 2. MECP (2011b) Protocol for Analytical Methods Used in the Assessment of Properties under Prt XV.1 of the *Environmental Protection Act*. PIBS 4696e01
- 3. MECP (2018); Well Records Map. Retrieved from https://www.ontario.ca/environment-and-energy/map-well-records
- 4. City of Toronto (2017); Environmentally Significant Areas Interactive Map. Retrieved from http://map.toronto.ca/maps/map.jsp?app=ESA
- 5. NHIC (2017); Make a Natural Heritage Map. Retrieved from http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_NaturalHeritage& viewer=NaturalHeritage&locale=en-US
- 6. Toporama. Retrieved from http://www.atlas.gc.ca/toporama/en/index.html

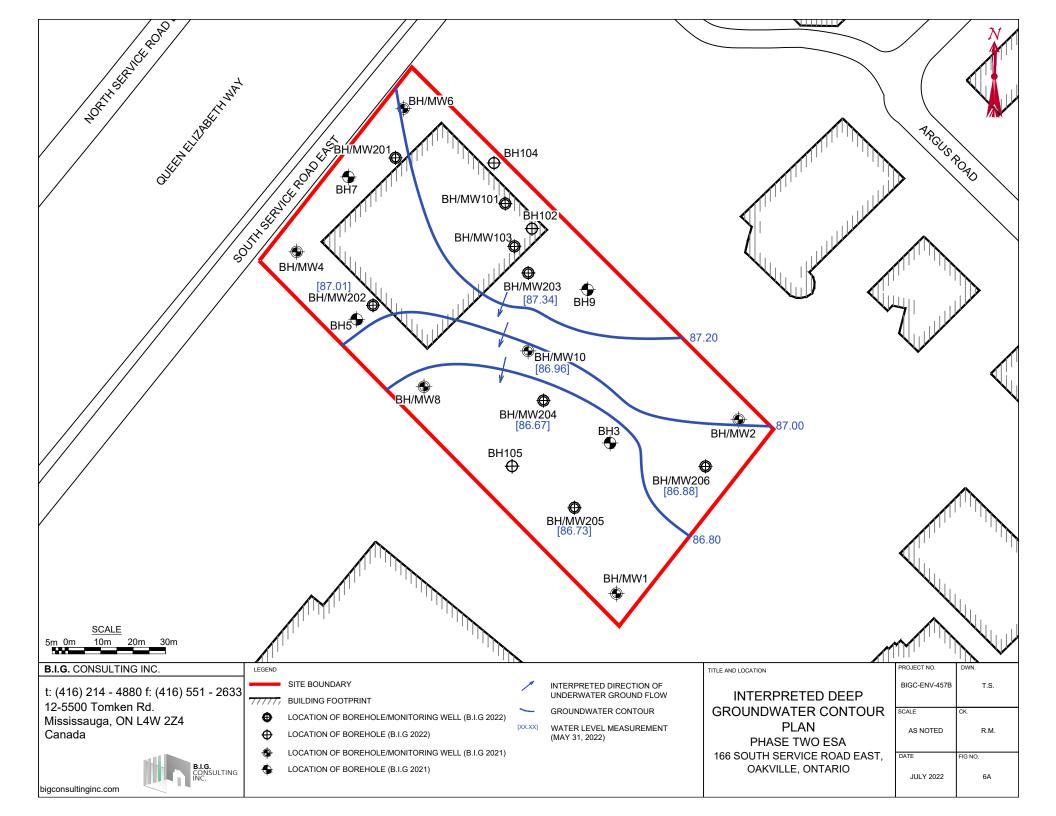

The following is a list of the environmental investigations reviewed in support of this report:

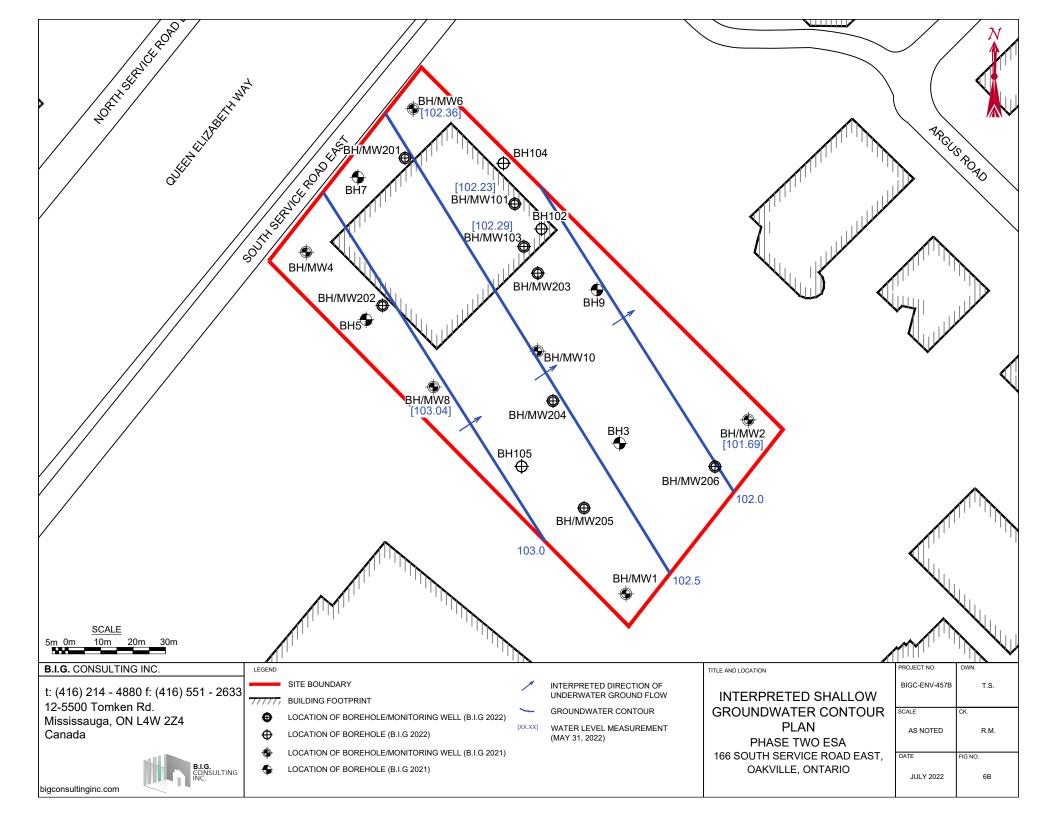

- 1. BIG (2021) Phase I Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G. Consulting Inc. May 10, 2021.
- 2. BIG (2021) Phase II Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G Consulting Inc. July 5, 2021.
- 3. BIG (2022) Phase One Environmental Site Assessment, 166 South Service Road East, Oakville, Ontario. B.I.G. Consulting Inc. November 10, 2022.

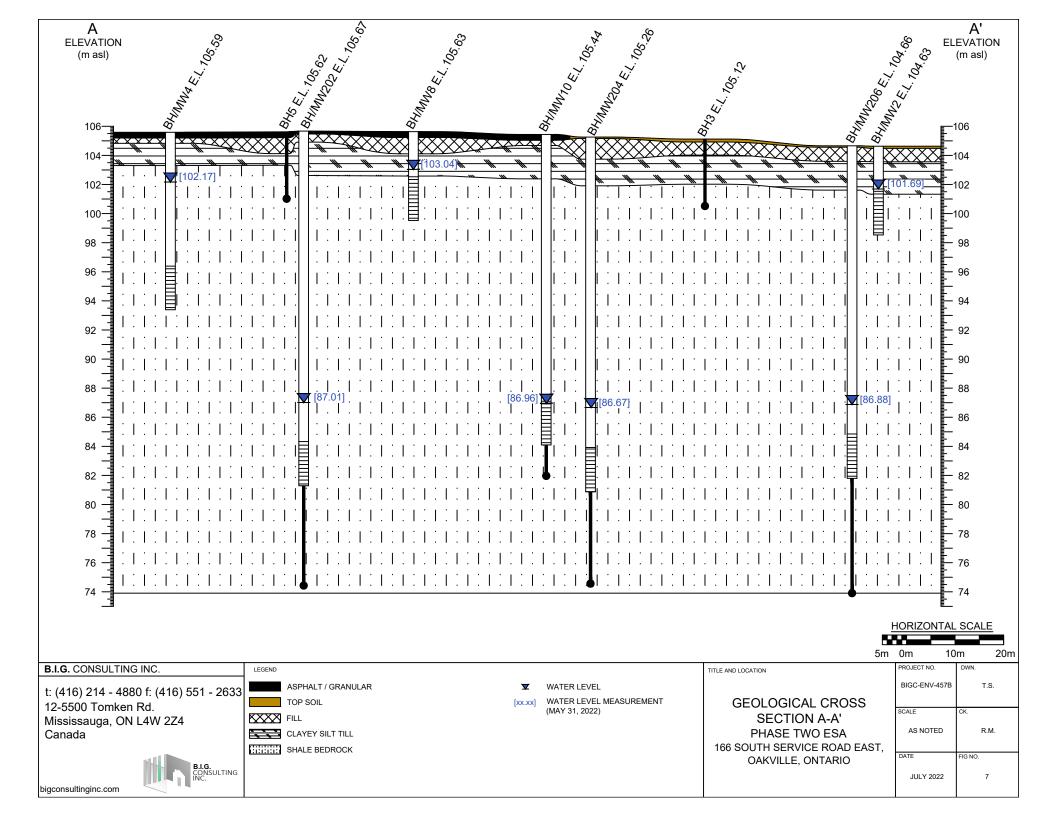


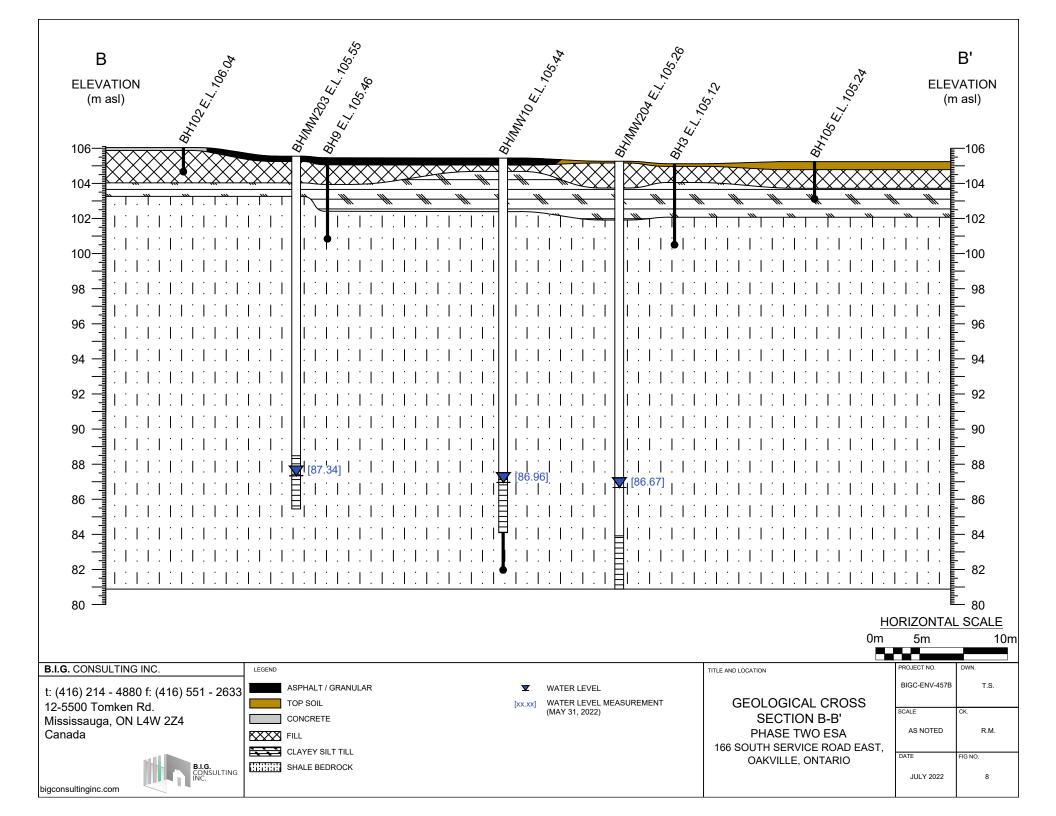

Figures

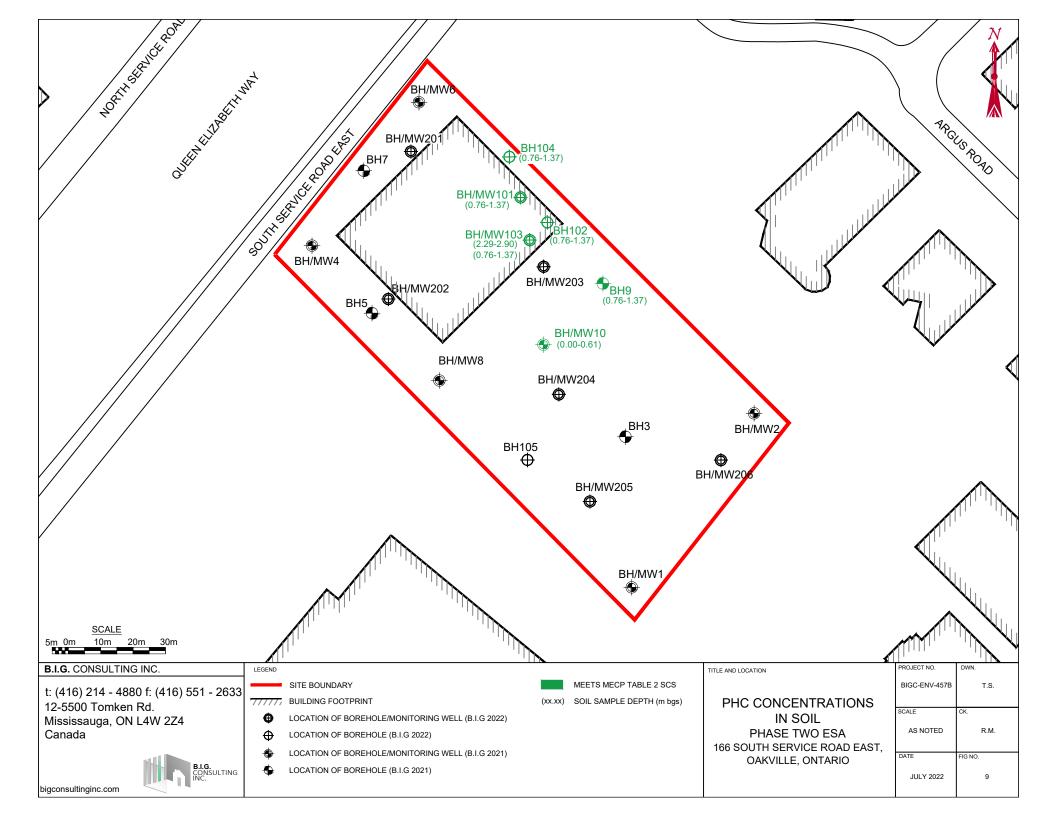


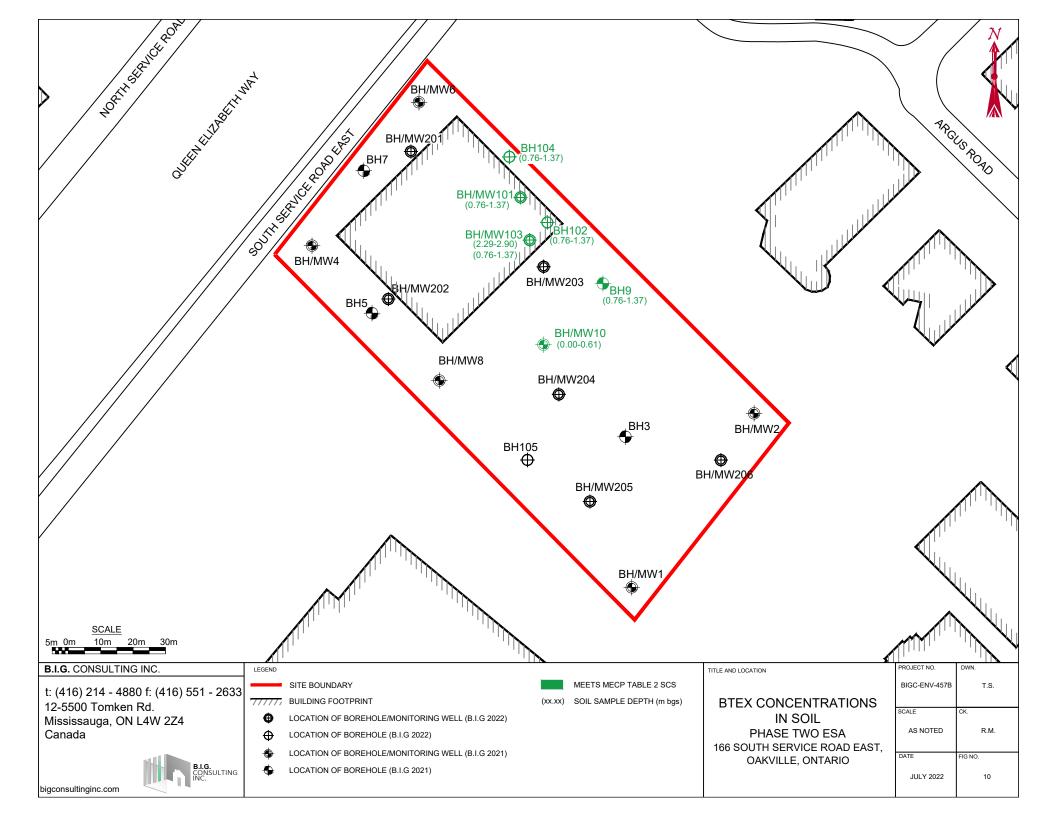


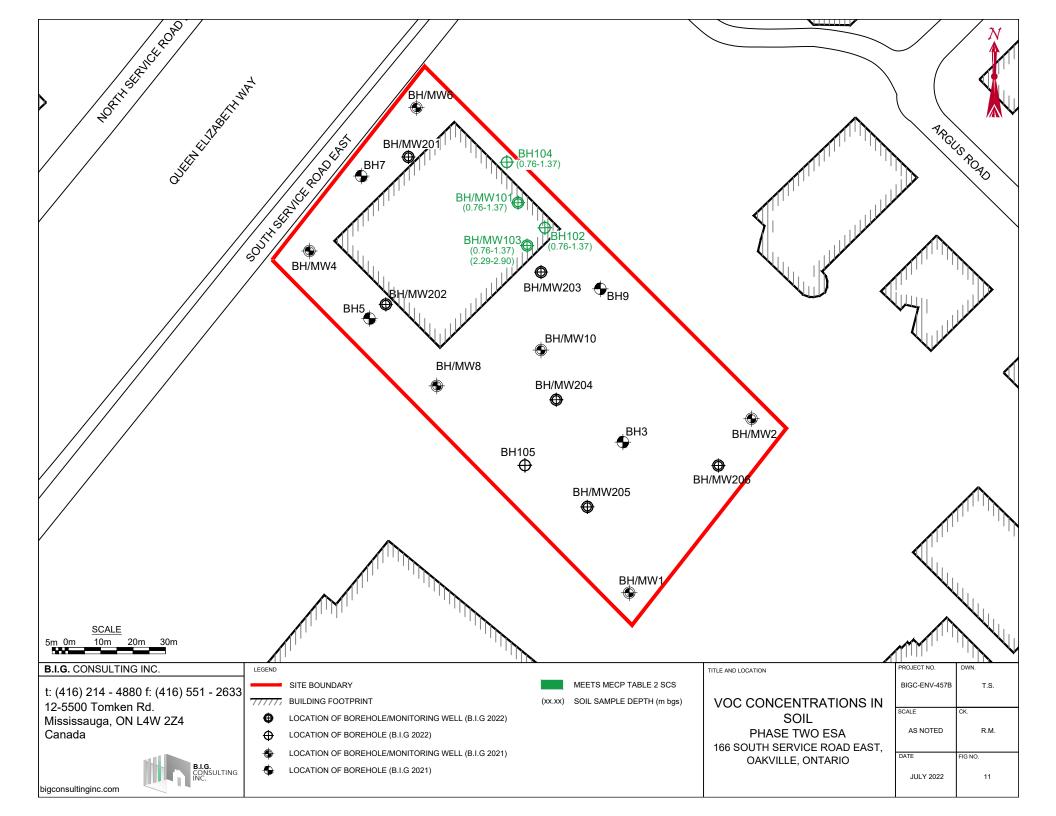


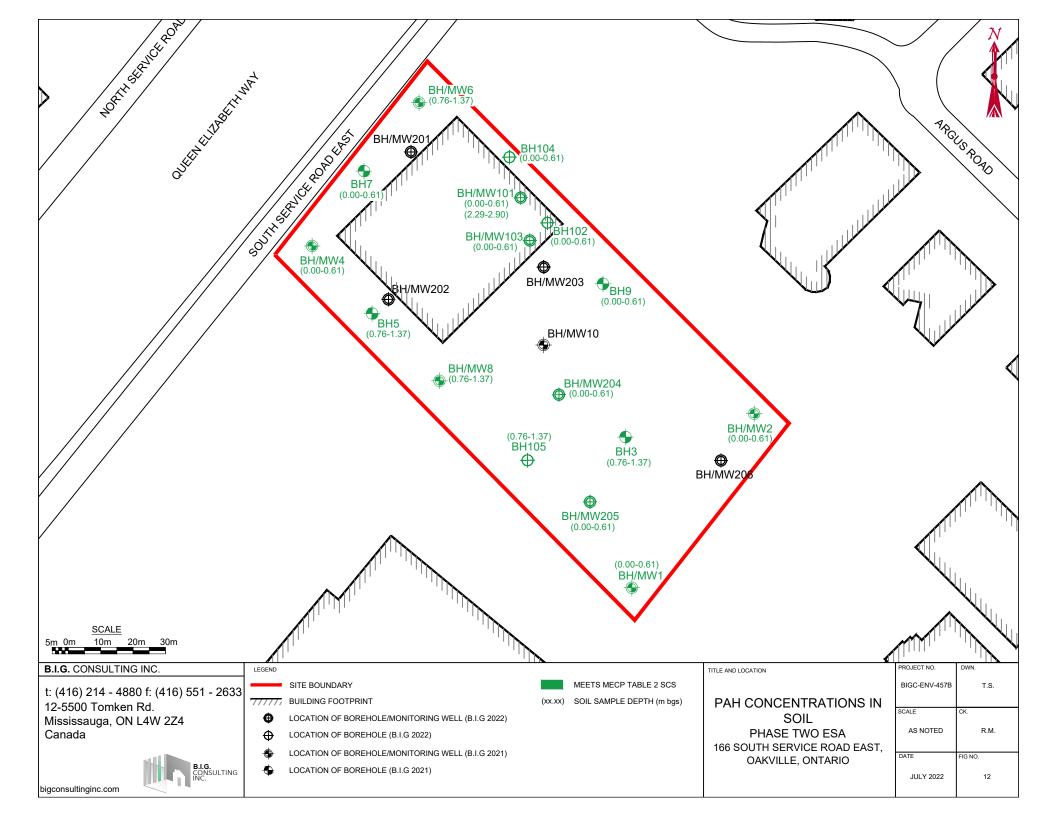


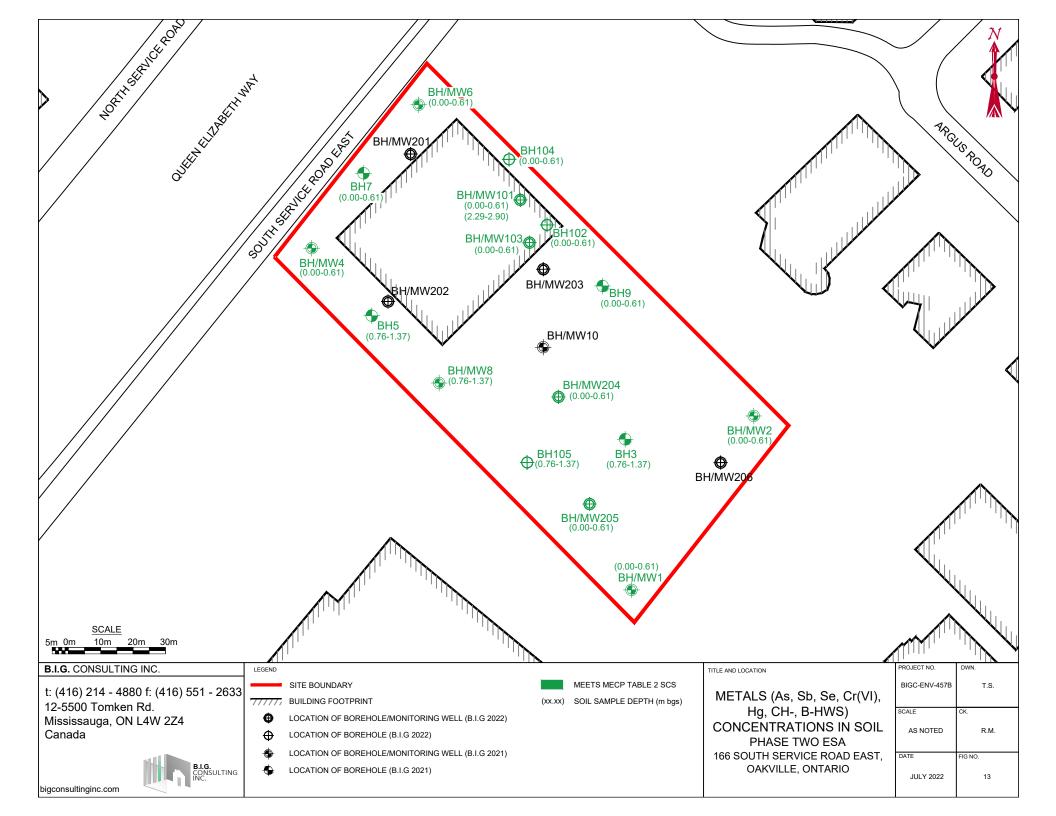


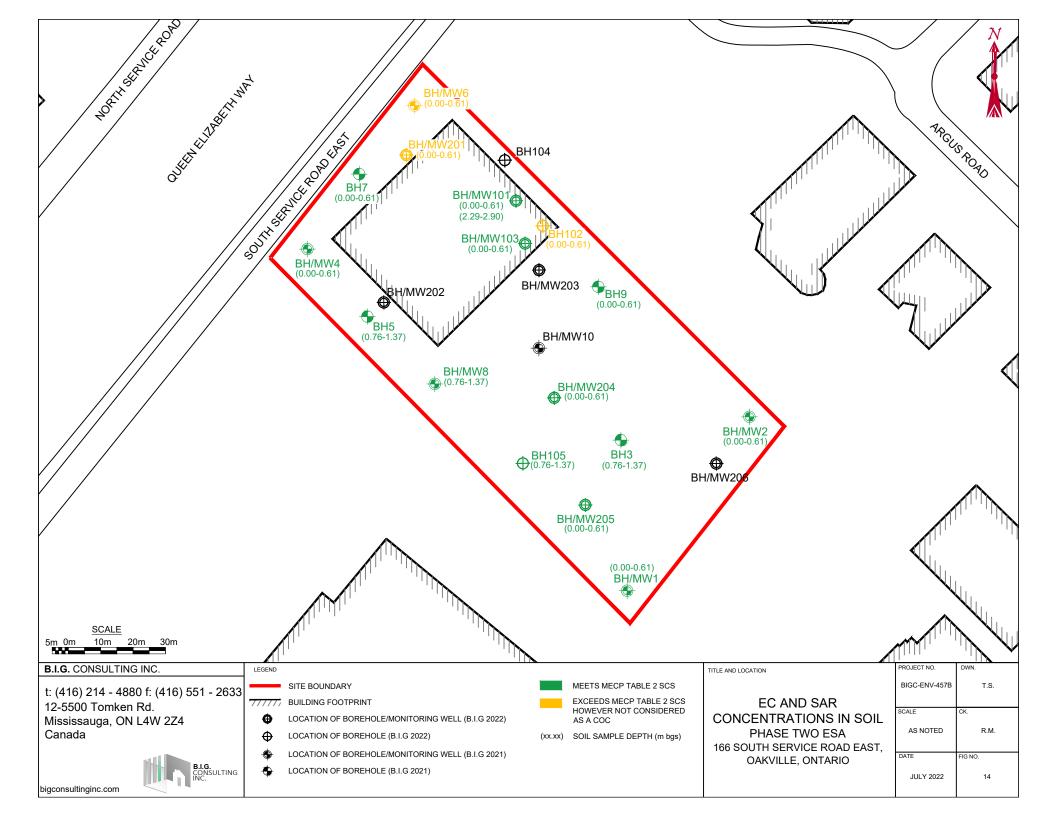




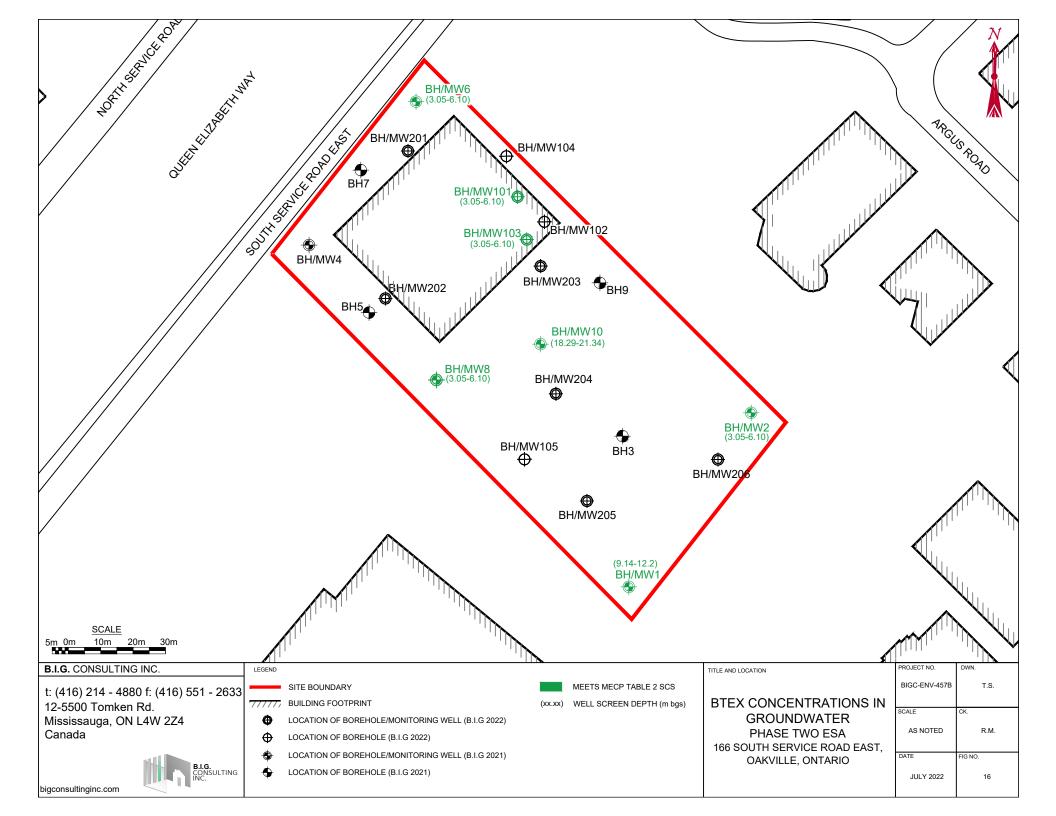


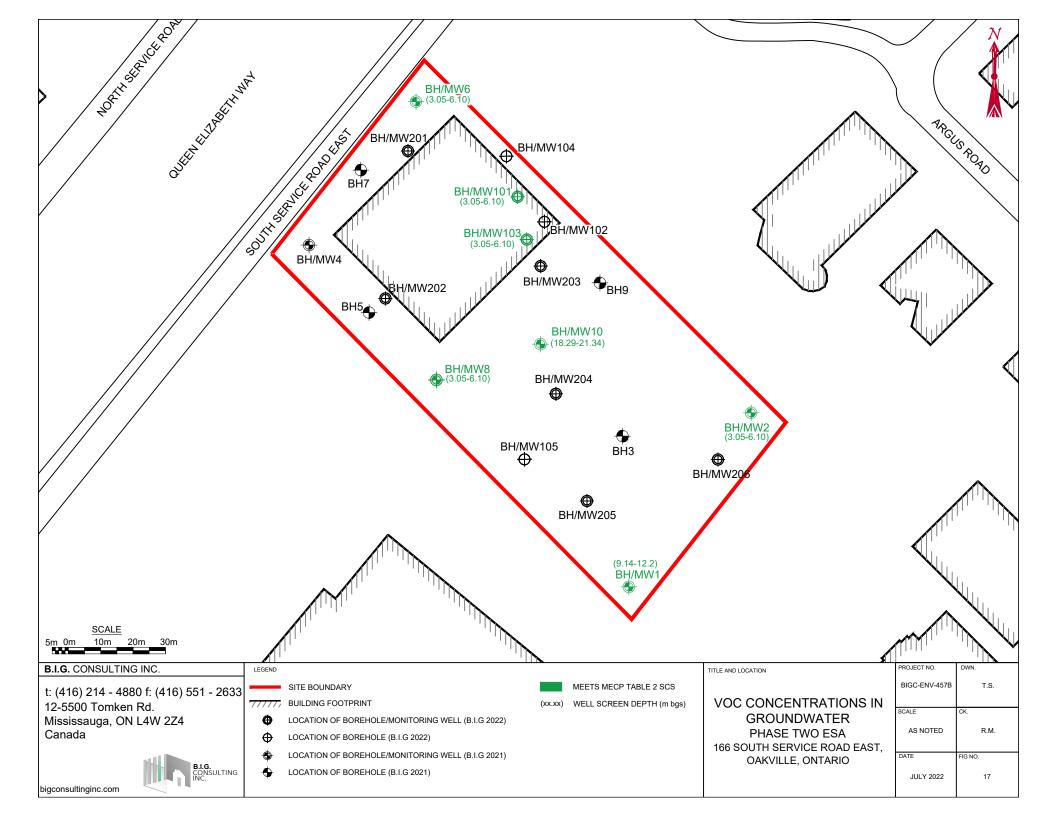












Tables

TABLE 1 – Areas of Potential Environmental Concern (APECs)

BIGC-ENV-457B – Phase Two Environmental Site Assessment 166 South Service Road East, Oakville, Ontario

ΑΡΕϹ	Location of APEC on Phase One Property	РСА	Location of PCA (On-Site or Off-Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Former autobody shop	Southeastern portion of Site building	#10 – Commercial Autobody Shops	On-Site	PHCs, BTEX and VOCs	Soil and Groundwater
APEC 2: Importation of fill material	Entire Site	#30 – Importation of Fill Material of Unknown Quality	On-Site	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 3: Use of de- icing salts	Asphalted portion of the Site and within the former autobody	"Other" – Usage of De-icing Salts	On-Site	Electrical Conductivity and SAR	Soil
APEC 4: Transformer	Southwestern portion	#55 - Transformer, Manufacturing, Processing and Use	Off-Site	PCBs	Groundwater
APEC 5: Former fuel oil tanks	Southwestern portion	#28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs and BTEX	Groundwater

(1) Areas of potential environmental concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through,

a. Identification of past or present uses in, on or under the phase one property, and

b. Identification of potentially contaminating activity.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area.

(3) PHCs = petroleum hydrocarbons; BTEX = benzene, toluene, ethylbenzene, xylenes; VOCs = volatile organic compounds; PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; As = arsenic; Sb = antimony; Se = selenium; B-HWS = boronhot water soluble; Cr (VI) = hexavalent chromium; Hg = mercury; CN- = cyanide; SAR = sodium adsorption ratio.

Table 2 - Summary of Soil Samples Submitted for Chemical Analysis

BIGC-ENV-457B– Phase Two Environmental Site Assessment 166 South Service Road East, Oakville, Ontario

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH1-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH2-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH3-SS2	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH4-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH5-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH6-SS1	APECs 2 + 3 characterization	Metals and Inorganics	BIG (2021b)
BH6-SS2	APEC 2 characterization	PAHs	BIG (2021b)
BH7-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH8-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH9-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2021b)
BH9-SS2	Site characterization	PHCs	BIG (2021b)
BH10-SS1	Site characterization	PHCs and BTEX	BIG (2021b)
BH10-SS4	Site characterization	рН	BIG (2021b)
BH101-SS1	APECs 1 - 3 characterization	PHCs, BTEX, PAHs, Metals and Inorganics	BIG (2022)
BH101-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH101-SS4	Native material characterization	PAHs, Metals and Inorganics	BIG (2022)
BH102-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH102-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH103-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH103-SS2	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH103-SS4	APEC 1 characterization	PHCs, BTEX and VOCs	BIG (2022)
BH104-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH104-SS2	Site characterization	PHCs, BTEX and VOCs	BIG (2022)
BH105-SS2	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH201-SS1	APEC 3 characterization	EC and SAR	BIG (2022)
BH204-SS1	APECs 2 + 3 characterization	PAHs, Metals and Inorganics	BIG (2022)
BH205-SS1	APEC 2 characterization	PAHs, Metals and Inorganics	BIG (2022)

TABLE 3 – Monitoring Well Installation Details

BIGC-ENV-457B – Phase Two Environmental Site Assessment

166 South Service Road East, Oakville, Ontario

Well ID	Consultant	Ground Elevation (m asl)	Stick down/stick up (m)	Top of screen (m bgs)	Bottom of screen (m bgs)	Screen length (m)	Top of screen (m asl)	Bottom of screen (m asl)	Geologic Units Intercepted by Well Screen	Well Condition
BH/MW1	BIG	104.79	-0.67	9.14	12.2	3.05	95.65	92.59	Shale	Intact
BH/MW1S	BIG	104.79	-0.65	3.05	6.10	3.05	101.74	98.69	Shale	Intact
BH/MW2	BIG	104.63	-0.69	3.05	6.10	3.05	101.58	98.53	Shale	Intact
BH/MW4	BIG	105.59	0.08	9.14	12.2	3.05	96.45	93.39	Shale	Intact
BH/MW6	BIG	105.67	0.10	3.05	6.1	3.05	102.62	99.57	Shale	Intact
BH/MW8	BIG	105.63	0.10	3.05	6.1	3.05	102.58	99.53	Shale	Intact
BH/MW10	BIG	105.44	0.10	18.3	21.3	3.0	87.14	84.14	Shale	Intact
BH/MW101	BIG	106.04	0.14	3.05	6.1	3.05	102.99	99.94	Shale	Intact
BH/MW103	BIG	106.04	0.13	3.05	6.1	3.05	102.99	99.94	Shale	Intact
BH/MW201	BIG	105.77	0.09	21.3	24.4	3.05	84.47	81.37	Shale	Intact
BH/MW202	BIG	105.67	0.10	21.3	24.4	3.05	84.37	81.27	Shale	Intact
BH/MW203	BIG	105.55	0.07	17.1	20.1	3.0	88.45	85.45	Shale	Intact
BH/MW204	BIG	105.26	-0.97	21.3	24.4	3.05	83.96	80.86	Shale	Intact
BH/MW205	BIG	105.00	-0.91	24.4	27.4	3.0	80.60	77.60	Shale	Intact
BH/MW206	BIG	104.66	-1.06	19.8	22.9	3.05	84.86	81.76	Shale	Intact

TABLE 4 – Water Level Depths and Elevations

BIGC-ENV-457B– Phase Two Environmental Site Assessment 166 South Service Road East, Oakville, Ontario

Monitoring	Ground Surface	Groundwater	Groundwater	Groundwater Level
Well ID	Elevation	Level (m bgs)	Elevation (m ASL)	Monitoring Date
		6.25	98.54	May 4, 2021
BH/MW1	104.79	6.05	98.74	May 19, 2021
		6.09	98.70	May 31, 2022
BH/MW1S	104.79	1.96	102.83	September 30, 2022
		2.64	101.99	May 4, 2021
	104.62	2.69	101.94	May 19, 2021
BH/MW2	104.63	2.94	101.69	May 31, 2022
		2.95	101.68	September 30, 2022
BH3	105.12	-	-	-
		3.46	102.13	May 4, 2021
BH/MW4	105.59	3.29	102.30	May 19, 2021
		3.42	102.17	May 31, 2022
BH5	105.62	-	-	-
		3.39	102.27	May 4, 2021
	105.67	3.23	102.44	May 19, 2021
BH/MW6	105.67	3.30	102.36	May 31, 2022
		3.32	102.35	September 30, 2022
BH7	105.80	-	-	-
		3.01	102.62	May 4, 2021
	105.00	2.55	103.08	May 19, 2021
BH/MW8	105.63	2.59	103.04	May 31, 2022
		2.56	103.07	September 30, 2022
BH9	105.46	-	-	-
		18.28	87.16	May 4, 2021
		18.36	87.08	May 19, 2021
BH/MW10	105.44	18.48	86.96	May 31, 2022
		18.45	86.99	September 30, 2022
		3.58	102.46	May 19, 2021
BH/MW101	106.04	3.81	102.23	May 31, 2022
		3.82	102.22	September 30, 2022
BH102	106.04	-	-	-
		3.53	102.51	May 19, 2021
BH/MW103	106.04	3.75	102.29	May 31, 2022
		3.69	102.35	September 30, 2022
BH104	105.71	-	-	-
BH105	105.24	-	-	-
		18.43	87.34	May 19, 2021
BH/MW201	105.77	18.59	87.18	May 31, 2022
		18.92	86.75	May 19, 2021
BH/MW202	105.67	18.66	87.01	May 31, 2022
		18.64	87.03	September 30, 2022

Monitoring Well ID	Ground Surface Elevation	Groundwater Level (m bgs)	Groundwater Elevation (m ASL)	Groundwater Level Monitoring Date
		18.12	87.43	May 19, 2021
BH/MW203	105.55	18.21	87.34	May 31, 2022
		18.20	87.35	September 30, 2022
		18.47	86.79	May 19, 2021
BH/MW204	105.26	18.59	86.67	May 31, 2022
		18.57	86.69	September 30, 2022
		18.19	86.81	May 19, 2021
BH/MW205	105.00	18.27	86.73	May 31, 2022
		18.25	86.75	September 30, 2022
		17.73	86.93	May 19, 2021
BH/MW206	104.66	17.78	86.88	May 31, 2022
		17.79	86.87	September 30, 2022

Table 5 – Summary of Groundwater Samples Submitted for Chemical Analyses

BIGC-ENV-457B – Phase Two Environmental Site Assessment 166 South Service Road East, Oakville, Ontario

Monitoring Well ID	Rationale	Requested Analyses	Consultant
BH/MW1	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW1S	APECs 4 and 5 characterization	PHCs, BTEX and PCBs	BIG
BH/MW2	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW6	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW8	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW10	Site characterization	PHCs, BTEX and VOCs	BIG
BH/MW101	APEC 1 characterization	PHCs, BTEX and VOCs	BIG
BH/MW103	APEC 1 characterization	PHCs, BTEX and VOCs	BIG

Appendix A - Sampling and Analysis Plan

1. Introduction

This appendix presents the Site Sampling and Analysis Plan (SSAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA), which will be conducted to provide further characterization of the Site subsurface conditions. The SSAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SSAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control (QA/QC) measures that will be undertaken to provide for the collection of accurate, reproducible, and representative data. These components are described in further detail below.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of parameters identified as potential contaminants of concern identified in the Phase One ESA.

The soil samples will be collected from of the surficial fill and overburden material. The groundwater samples will be collected from each monitoring well.

The monitoring wells will be installed at selected boreholes to intercept the groundwater table aquifer. The monitoring wells will be installed with 3 m long screens extending to a maximum depth of approximately 27.4 meters below grade.

Elevation of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a Site temporary benchmark or a local geodetic benchmark. Groundwater flow will be determined through groundwater level measurements and the relative groundwater elevations established in the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- a) Borehole Drilling;
- b) Soil Sampling;
- c) Monitoring Well Installation;
- d) Monitoring Well Development;
- e) Groundwater Level Measurements;
- f) Elevation Survey;
- g) Groundwater Sampling; and
- h) Residue Management Procedures.

The field investigative methods will be performed as described below:

a) Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization and for the installation of groundwater monitoring wells. Boreholes will be advanced at the Site to a maximum depth of approximately 31.24 m below grade, within the overburden materials to provide for the collection of soil samples beneath the Site. The borehole locations will be selected to assess soil and groundwater quality at the Site.

Prior to borehole drilling, utility clearances will be obtained from public locators, as required. Boreholes will be advanced into the surficial fill and overburden soils by a drilling company under the full-time supervision of BIG staff. A truck mounted drilling machine equipped with hollow stem augers and split spoons will be utilized to advance the exterior boreholes through the overburden materials. The interior boreholes will be advance by a Mini Mole drill.

b) Soil Sampling

Soil samples for geologic characterization and chemical analysis will be collected from the overburden boreholes using 5 cm diameter, 60 cm long, stainless steel split-spoon sampling devices advanced into the subsurface using the M4T drill for the interior boreholes and a track mounted power probe for the exterior ones. The split-spoon samplers will be attached to drill rods and advanced into the soil by means of a machine-driven hammer. Spilt-spoon soil samples will be collected where possible, beginning at the ground surface and subsequently at continuous intervals. Geologic and sampling details of the recovered cores will be logged, and the samples will be assessed for the potential presence of non-aqueous phase liquids. A portion of each soil sample will be placed in a sealed "zip-lock" plastic bag and allowed to reach ambient temperature prior to field screening with a photoionization detector (PID) that will be calibrated by the supplier with an appropriate reference gas and zeroed in ambient conditions prior to use. The vapour measurements will be made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings will provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling. Samples for chemical analysis will be selected on the basis of visual, combustible gas, and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of suspected impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into precleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for VOC analysis will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field notebook. The samples will be submitted to a CAEL certified laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used during the handling and sample collection for each soil core to prevent sample cross-contamination.

c) Monitoring Well Installation

Monitoring wells will be installed in general accordance with Ontario Regulation 903/90, as amended and will be installed by a licensed well contractor.

The monitoring wells will be constructed using 50 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The pipe components will be pre-wrapped in plastic, which will be removed prior to insertion in the borehole to minimize the potential for contamination. No lubricants or adhesives will be used in the construction of the monitoring wells. The annular space around the well screens will be backfilled with silica sand to at least 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately grade. The monitoring wells will be completed with protective casings.

d) Monitoring Well Development

Monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance contact with the surrounding formation groundwater and will be developed using Wattera[®] tubing and a monsoon pump. Monitoring well development will be monitored by multiparameter water quality meter, visual observations of turbidity, and by taking field measurements of pH and conductivity for every well volume removed. Standing water volumes will be determined by means of a water level meter. Water quality parameter measurements will be recorded using a multiparameter water quality meter. A minimum of approximately three (3) well volumes will be removed; and, well development will continue until the purged water has chemically stabilized as indicated by field parameters measurements.

Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All water accumulated during well development will be collected and stored in sealed containers.

e) Groundwater Level Measurements

Groundwater level measurements will be recorded from monitoring wells to determine groundwater flow and direction at the Site. Water levels will be measured with respect to the top of the casing by means of a groundwater level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

f) Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a known geodetic benchmark, or if unavailable, against a suitable arbitrary temporary benchmark. Elevations measured against a geodetic benchmark will be recorded as meters above mean sea level (m AMSL). The ground surface elevations have previously been surveyed by BIG personnel and the geodetic benchmark is the fire hydrant located at the northwest corner of the Site along South Service Road East with a published elevation of 106.58

m (asl). The elevation survey will be accurate to within ± 1 cm.

g) Groundwater Sampling

Groundwater samples will be collected from monitoring wells for chemical analysis. The monitoring wells will be purged first of three to five wetted well volumes of water, or until dry, to remove standing water and draw in fresh formation water as previously described. Dedicated well materials will be used for well purging and sample collection.

Recommended groundwater sample volumes will be collected into pre-cleaned, laboratorysupplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Where needed, bottles will be checked for headspace.

All groundwater samples will be assigned unique identification numbers, and the date, time, project number, and company name will be specified on each bottle. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

h) Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of decontamination fluids from equipment cleaning, and waters from well development and purging will be placed in sealed drums for future off-Site disposal.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e., non-contaminated) samples, sample documentation, and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- a) Decontamination Protocols;
- b) Equipment Calibration;
- c) Sample Preservation;
- d) Sample Documentation; and,
- e) Field Quality Control Samples.

Details on the field QA/QC measures are provided in the following sections.

a) Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split-spoon soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations. For the monitoring well installation, well

components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, purging activities, and rising head tests. All decontamination fluids will be collected and stored in sealed containers.

b) Equipment Calibration

All equipment requiring calibration will be calibrated according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities.

c) Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in ice-filled insulated coolers for storage and transport.

d) Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, and company name. All samples will be handled and transported following COC protocols.

e) Field Quality Control Samples

Field quality controls samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. Where required, for groundwater samples, a trip blank prepared by a laboratory will be submitted for chemical analysis to evaluate the potential for sample cross-contamination or bias. The recommended alert criteria for the trip blank sample are the detections of any test group analyte at a concentration in excess of laboratory detection limits.

Appendix B – Analytical Results

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater	BH9- SS2	BH10-SS1	BH101-SS2	BH102-SS2	BH103-SS2	BH103-SS4	BH104-SS2				
Lab ID	Condition	2416765	2416771	SMS943	SMS946	SMS948	SMS949	SMS951				
Sampling Date	Residential/Parkland/Institutional Land	28-Apr-21	28-Apr-21	27-Apr-22	27-Apr-22	28-Apr-22	28-Apr-22	28-Apr-22				
Soil Sample Depth (m)	Use	0.76-1.37	0.0-0.61	0.76-1.37	0.76-1.37	0.76-1.37	2.29-2.90	0.76-1.37				
Consultant	(medium/fine textured soil)	BIG										
Laboratory	(incuranty line textured bolly	AGAT	AGAT	BV	BV	BV	BV	BV				
PHC F1 (C6-C10)	65	<5	<5	<10	<10	<10	<10	<10				
PHC F1 (C6-C10) - BTEX	65	<5	<5	<10	<10	<10	<10	<10				
PHC F2 (C10-C16)	150	<10	<10	<10	<10	<10	<10	<10				
PHC F3 (C16-C34)	1300	<50	<50	<50	<50	73	<50	<50				
PHC F4 (C34-C50)	5600	<50	<50	<50	<50	<50	<50	87				
Reached baseline at C50?	-	Yes										
PHC F4 (C34-C50)-gravimetric	5600	-	-	-	-	-	-	-				
All soil concentrations reported in µg/g. '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MECP (2011) SCS. Non-detect but detection limit exceeds the MECP (2011) SCS.												

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH9- SS2	BH10-SS1	BH101-SS2	BH102-SS2	BH103-SS2	BH103-SS4	BH104-SS2
Lab ID	Residential/Parkland/Institutional Land	2416765	2416771	SMS943	SMS946	SMS948	SMS949	SMS951
Sampling Date	Use	28-Apr-21	28-Apr-21	27-Apr-22	27-Apr-22	28-Apr-22	28-Apr-22	28-Apr-22
Soil Sample Depth (m)		0.76-1.37	0.0-0.61	0.76-1.37	0.76-1.37	0.76-1.37	2.29-2.90	0.76-1.37
Consultant	(medium/fine textured soil)	BIG						
Laboratory		AGAT	AGAT	BV	BV	BV	BV	BV
Acetone	28	-	-	<0.49	<0.49	<0.49	<0.49	<0.49
Benzene	0.17	<0.02	<0.02	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060
Bromodichloromethane	1.9	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Bromoform	0.26	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Bromomethane	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	0.12	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	2.7	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Chloroform	0.18	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Dibromochloromethane	2.9	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,2-Dichlorobenzene	1.7	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,3-Dichlorobenzene	6	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,4-Dichlorobenzene	0.097	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Dichlorodifluoromethane	25	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,1-Dichloroethane	0.6	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,2-Dichloroethane	0.05	-	-	<0.049	<0.049	<0.049	<0.049	<0.049
1,1-Dichloroethylene	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
cis-1,2-Dichloroethylene	2.5	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
trans-1,2-Dichloroethylene	0.75	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,2-Dichloropropane	0.085	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
cis-1,3-Dichloropropene	0.081	-	-	<0.030	<0.030	<0.030	<0.030	<0.030
trans-1,3-Dichloropropene	0.081	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	1.6	<0.05	<0.05	<0.010	<0.010	<0.010	<0.010	<0.010
Ethylene Dibromide (1,2-Dibromoethane)	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Hexane (n)	34	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Methylene chloride (Dichloromethane)	0.96	-	-	<0.049	<0.049	<0.049	<0.049	<0.049
Methyl ethyl ketone (2-Butanone)	44	-	-	<0.40	<0.40	<0.40	<0.40	<0.40
Methyl Isobutyl Ketone	4.3	-	-	<0.40	<0.40	<0.40	<0.40	<0.40
Methyl t-butyl ether (MTBE)	1.4	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Styrene	2.2	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,1,1,2-Tetrachloroethane	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Tetrachloroethylene	2.3	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Toluene	6	<0.05	<0.05	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	3.4	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,1,2-Trichloroethane	0.05	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Trichloroethylene	0.52	-	-	<0.010	<0.010	<0.010	<0.010	<0.010
Trichlorofluoromethane	5.8	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
Vinyl Chloride	0.022	-	-	<0.019	<0.019	<0.019	<0.019	<0.019
m-Xylene + p-Xylene	NV	-	-	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	-	-	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	25	< 0.05	<0.05	<0.020	<0.020	<0.020	<0.020	<0.020

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH1-SS1	BH2-SS1	BH3-SS2	BH4-SS1	BH5-SS2	BH6-SS2	BH7-SS1	BH8-SS2	BH9-SS1
Lab ID	SCS in a Potable Groundwater Condition	2416477	2416488	2416489	2416490	2416491	2416651	2416722	2416725	2416728
Sampling Date	Residential/Parkland/Institutional Land	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	28-Apr-21	28-Apr-21	28-Apr-21
Soil Sample Depth (m)	Use	0.0-0.61	0.0-0.61	0.76-1.37	0.0-0.61	0.76-1.37	0.76-1.37	0.0-0.61	0.76-1.37	0.0-0.61
Consultant	(medium/fine textured soil)	BIG								
Laboratory		AGAT								
Acenaphthene	29	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Acenaphthylene	0.17	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
Anthracene	0.74	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	0.63	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
Benzo(a)pyrene	0.3	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	0.21	< 0.05
Benzo(b)fluoranthene	0.78	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
Benzo(ghi)perylene	7.8	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	0.78	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	7.8	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	0.1	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.69	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Fluorene	69	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	0.48	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
1-Methylnaphthalene	3.4	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	3.4	-	-	-	-	-	-	-	-	-
1&2-Methylnaphthalene	3.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Naphthalene	0.75	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	7.8	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Pyrene	78	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MECP (2011) SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS.

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH101-SS1	BH101-SS4	BH102-SS1	BH103-SS1	DUP1031 (Dup of BH103-SS1)	BH104-SS1	BH105-SS2	BH204-SS1	BH205-SS1
Lab ID	SCS in a Potable Groundwater Condition	SMS942	SMS944	SMS945	SMS947	SSF299	SMS950	SQW477	SQW479	SQW480
Sampling Date	Residential/Parkland/Institutional Land	27-Apr-22	27-Apr-22	27-Apr-22	28-Apr-22	28-Apr-22	28-Apr-22	11-May-22	9-May-22	9-May-22
Soil Sample Depth (m)	Use	0.00-0.61	2.29-2.90	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.76-1.37	0.0-0.61	0.0-0.61
Consultant	(medium/fine textured soil)	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	BV	BV	BV	BV	BV	BV	BV
Acenaphthene	29	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.0050	< 0.0050	<0.0050
Acenaphthylene	0.17	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	< 0.0050	< 0.0050
Anthracene	0.74	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.0050	0.015	0.0058
Benzo(a)anthracene	0.63	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.0050	0.052	0.024
Benzo(a)pyrene	0.3	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.054	0.024
Benzo(b)fluoranthene	0.78	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	0.007	0.083	0.035
Benzo(ghi)perylene	7.8	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.046	0.018
Benzo(k)fluoranthene	0.78	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.027	0.012
Chrysene	7.8	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.049	0.021
Dibenz(a,h)anthracene	0.1	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.0050	0.0089	<0.0050
Fluoranthene	0.69	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.0050	0.12	0.058
Fluorene	69	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	<0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	0.48	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.04	0.018
1-Methylnaphthalene	3.4	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.0050	0.012	<0.0050
2-Methylnaphthalene	3.4	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.0050	0.012	<0.0050
1&2-Methylnaphthalene	3.4	-	-	-	-	-	-	<0.0071	0.024	<0.0071
Naphthalene	0.75	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.0050	0.0087	<0.0050
Phenanthrene	7.8	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0050	0.07	0.029
Pyrene	78	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.0050	0.10	0.045

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MECP (2011) SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS.

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH1-SS1	BH2-SS1	BH3-SS2	BH4-SS1	BH5-SS2	BH6-SS1	BH7-SS1	BH8-SS2				
Lab ID	SCS in a Potable Groundwater Condition	2416477	2416488	2416489	2416490	2416491	2416504	2416722	2416725				
Sampling Date	Residential/Parkland/Institutional Land	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	27-Apr-21	28-Apr-21	28-Apr-21				
Soil Sample Depth (m)	Use	0.0-0.61	0.0-0.61	0.76-1.37	0.0-0.61	0.76-1.37	0.0-0.61	0.0-0.61	0.76-1.37				
Consultant	(medium/fine textured soil)	BIG											
Laboratory		AGAT											
Antimony	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8				
Arsenic	18	8.0	6.0	7.0	2.0	4.0	6.0	8.0	7.0				
Barium	390	119	95.3	116	87.1	80.7	81.5	177	175				
Beryllium	5	0.9	0.7	0.9	0.9	1.20	0.8	1.20	1.20				
Boron (Total)	120	13	9	9	12	19	23	28	22				
Boron (Hot water soluble)	1.5	0.29	0.54	0.53	0.63	0.56	0.41	0.56	0.65				
Cadmium	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Chromium (total)	160	24	41	23	20	26	21	30	28				
Chromium VI	10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Cobalt	22	12.6	8.7	11.8	8.3	13.5	11.2	15.9	14.1				
Copper	180	55.7	48.4	41.5	10.3	23.6	27.2	37.4	17				
Lead	120	15	17	10	5	7	9	7	7				
Mercury	1.8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10				
Molybdenum	6.9	0.8	1.1	1.3	<0.5	1.6	1.5	2.9	1.8				
Nickel	130	27	20	27	22	31	25	37	34				
Selenium	2.4	<0.8	<0.8	<0.8	1.1	<0.8	<0.8	<0.8	<0.8				
Silver	25	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Thallium	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Uranium	23	0.7	0.99	1.29	1.4	1.68	0.7	0.85	1.47				
Vanadium	86	37.2	31.7	39.5	25.6	40.1	33.7	47.5	49.2				
Zinc	340	76	68	58	66	74	76	72	62				
Electrical Conductivity (mS/cm)	0.7	0.182	0.231	0.289	0.497	0.497	0.418	0.354	0.331				
Sodium Adsorption Ratio (unitless)	5	0.693	0.992	1.38	4.71	4.13	5.11	4.35	2.78				
Free Cyanide	0.051	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040				
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	7.71	7.60	7.52	7.60	7.62	7.89	7.93	7.18				
All soil concentrations reported in µg/g. '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MECP (2011) SCS. Non-detect but detection limit exceeds the MECP (2011) SCS.													

pH level outside of the acceptable MECP range

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH9-SS1	BH10-SS4	BH101-SS1	BH101-SS4	DUP1014 (Dup of BH101-SS4)	BH102-SS1
Lab ID	 SCS in a Potable Groundwater Condition 	2416728	2416786	SMS942	SMS944	SSF298	SMS945
Sampling Date	Residential/Parkland/Institutional Land	28-Apr-21	28-Apr-21	27-Apr-22	27-Apr-22	27-Apr-22	27-Apr-22
Soil Sample Depth (m)	Use	0.0-0.61	2.29-2.90	0.00-0.61	2.29-2.90	2.29-2.90	0.00-0.61
Consultant	(medium/fine textured soil)	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		AGAT	AGAT	BV	BV	BV	BV
Antimony	7.5	<0.8		<0.20	0.36	0.60	<0.20
Arsenic	18	6.0		6.6	6.5	7.5	6.9
Barium	390	47.1	-	54	120	70	54
Beryllium	5	0.4	-	0.32	0.95	1	0.33
Boron (Total)	120	<5	-	7	17	20	7.4
Boron (Hot water soluble)	1.5	<0.10	-	0.11	0.44	0.54	0.091
Cadmium	1.2	<0.5	-	0.11	<0.10	<0.10	0.11
Chromium (total)	160	12	-	12	27	27	11
Chromium VI	10	<0.2	-	<0.18	<0.18	<0.18	<0.18
Cobalt	22	5.6	-	7.1	15	15.0	7.1
Copper	180	36.9	-	48	54	81	50
Lead	120	9	-	17	9	8.4	17
Mercury	1.8	<0.10	-	<0.05	<0.05	<0.05	<0.05
Molybdenum	6.9	<0.5	-	0.67	2.3	2.7	0.75
Nickel	130	12	-	13	35	35	14
Selenium	2.4	<0.8	-	<0.50	<0.50	<0.50	<0.50
Silver	25	<0.5	-	<0.20	<0.20	<0.20	<0.20
Thallium	1	<0.5	-	0.1	0.11	0.1	0.1
Uranium	23	<0.50	-	0.44	1.70	0.89	0.44
Vanadium	86	21.4	-	20	33	34	21
Zinc	340	37	-	50	70	68	50
Electrical Conductivity (mS/cm)	0.7	0.142	-	0.190	0.180	0.150	0.290
Sodium Adsorption Ratio (unitless)	5	0.74	-	0.84	1.0	0.94	9.50
Free Cyanide	0.051	<0.040	-	<0.01	<0.01	<0.01	<0.01
рН (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	7.68	7.76	-	7.79	7.94	-
pH (pH units) All soil concentrations rep '<' = Parameter below detectio 'NV'= No value Bold Concentration exceeds M	orted in μg/g. n limit, as indicated	7.00	1.70	<u> </u>	1.19	7.54	

Non-detect but detection limit exceeds the MECP (2011) SCS. pH level outside of the acceptable MECP range

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH103-SS1	BH104-SS1	BH105-SS2	BH201-SS1	BH204-SS1	BH205-SS1
Lab ID	Residential/Parkland/Institutional Land	SMS947	SMS950	SQW477	SQW478	SQW479	SQW480
Sampling Date	Use	28-Apr-22	28-Apr-22	11-May-22	3-May-22	9-May-22	9-May-22
Soil Sample Depth (m)		0.00-0.61	0.00-0.61	0.76-1.37	0.00-0.61	0.00-0.61	0.00-0.61
Consultant	(medium/fine textured soil)	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	BV	BV	BV	BV
Antimony	7.5	<0.20	0.38	<0.20	-	0.84	0.47
Arsenic	18	7.9	6.5	4.8	-	9.8	5.6
Barium	390	46	130	100	-	110	100
Beryllium	5	0.33	0.71	0.75	-	0.75	0.64
Boron (Total)	120	7.5	12	17	-	9.8	8.8
Boron (Hot water soluble)	1.5	0.087	0.860	0.430	-	0.640	0.730
Cadmium	1.2	0.11	0.42	0.14	-	0.32	0.33
Chromium (total)	160	11	17	41	-	24	23
Chromium VI	10	<0.18	<0.18	<0.18	-	<0.18	<0.18
Cobalt	22	6.9	7.6	20	-	9.5	8.1
Copper	180	53	21	48	-	55	46
Lead	120	17	25	10	-	41	37
Mercury	1.8	<0.05	<0.05	<0.050	-	<0.050	<0.050
Molybdenum	6.9	0.75	2	0.62	-	1.3	1.3
Nickel	130	14	16	43	-	21	18
Selenium	2.4	<0.50	<0.50	<0.50	-	<0.50	<0.50
Silver	25	<0.20	<0.20	<0.20	-	0.2	0.2
Thallium	1	0.096	0.13	0.18	-	0.11	0.11
Uranium	23	0.46	2.4	0.7	-	1.4	1.1
Vanadium	86	20	27	65	-	29	26
Zinc	340	52	120	59	-	100	110
Electrical Conductivity (mS/cm)	0.7	0.130	0.500	0.270	0.71	0.380	0.540
Sodium Adsorption Ratio (unitless)	5	0.74	0.92	2.80	7.80	1.20	0.78
Free Cyanide	0.051	<0.01	<0.01	<0.01	-	<0.01	<0.01
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	-	-	7.69	-	7.64	7.59
All soil concentrations re '<' = Parameter below detect 'NV'= No value		<u>ц</u>	1	1	1	1	1

BoldConcentration exceeds MECP (2011) SCS.Non-detect but detection limit exceeds the MECP (2011) SCS.pH level outside of the acceptable MECP range

Sample ID		,	MW1	BH/MW1S	BH/I	MW2	BH/MW6	
Lab ID	MOECC (2011) Table 2: Full Depth Generic	2430912	SRE880	TXA545	2430930	SRE881	2430931	
Sampling Date	SCS in a Potable Groundwater Condition	5-May-21	19-May-22	3-Oct-22	5-May-21	19-May-22	5-May-21	
Screen Depth Interval (m)	All Types of Land Use	9.14	-12.2	3.05-6.10	3.05	3.05-6.10		
Consultant	(medium/fine textured soil)	BIG	BIG	BIG	BIG	BIG	BIG	
Laboratory		AGAT	BV	BV	AGAT	BV	AGAT	
PHC F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	
PHC F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25	
PHC F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100	
PHC F3 (C16-C34)	500	<100	<200	<200	<100	<200	<100	
PHC F4 (C34-C50)	500	<100	<200	<200	<100	<200	<100	
Reached baseline at C50?	-	Yes	Yes	Yes	Yes	Yes	Yes	
PHC F4 (C34-C50)-gravimetric	500	-	-	-	-	-	-	
 '<' = Parameter below determined 'NV'= No value Bold Concentration exceed 	entrations reported in μg/L. ection limit, as indicated eds MECP (2011) SCS. ction limit exceeds the MECP (2011) SCS.							

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH/MW8	DUP080 (Dup of BH/MW8)	BH/MW10	BH/MW101	BH/MW103	Trip Blank
Lab ID	SCS in a Potable Groundwater Condition	SRE882	SRE885	2430932	SRE883	SRE884	SRE886
Sampling Date		19-May-22	19-May-22	5-May-21	19-May-22	19-May-22	19-May-22
Screen Depth Interval (m)	All Types of Land Use	3.05-6.10	3.05-6.10	18.29-21.34	3.0-6.0	3.0-6.0	-
Consultant	(medium/fine textured soil)	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	AGAT	BV	BV	BV
PHC F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25
PHC F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25
PHC F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100
PHC F3 (C16-C34)	500	<200	<200	<100	<200	<200	<200
PHC F4 (C34-C50)	500	<200	<200	<100	<200	<200	<200
Reached baseline at C50?	-	Yes	Yes	Yes	Yes	Yes	Yes
PHC F4 (C34-C50)-gravimetric	500	-	-	-	-	-	-
'<' = Parameter below de 'NV'= No valueBold Concentration exc.	centrations reported in μg/L. etection limit, as indicated eeds MECP (2011) SCS. rection limit exceeds the MECP (2011) SCS.						

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH/MW1	BH/MW1S	BH/I	WW2	BH/MW6	BH/MW8	DUP080 (Dup of BH/MW8)	BH/MW10	BH/MW101	BH/MW103	Trip Blank
Lab ID	SCS in a Potable Groundwater Condition	SRE880	TXA545	2430930	SRE881	2430931	SRE882	SRE885	2430932	SRE883	SRE884	SRE886
Sampling Date	All Types of Land Use	19-May-22	3-Oct-22	5-May-21	19-May-22	5-May-21	19-May-22	19-May-22	5-May-21	19-May-22	19-May-22	19-May-22
Screen Depth Interval (m)	(medium/fine textured soil)	9.2-12.2	3.05-6.10	3.05-6.10	3.05-6.10	3.05-6.10	3.05-6.10	3.05-6.10	18.29-21.34	3.0-6.0	3.0-6.0	-
Consultant		BIG	BIG	BIG	BIG	BIG						
Laboratory		BV	BV	AGAT	BV	AGAT	BV	BV	AGAT	BV	BV	BV
Acetone	2700	<10	-	<1.0	<10	<1.0	<10	<10	<4.0	<10	<10	<10
Benzene	5	<0.17	<0.20	<0.20	<0.17	<0.20	<0.17	<0.17	<0.80	<0.17	<0.17	<0.17
Bromodichloromethane	16	<0.50	-	<0.20	<0.50	<0.20	< 0.50	<0.50	<0.80	<0.50	<0.50	< 0.50
Bromoform	25	<1.0	-	<0.10	<1.0	<0.10	<1.0	<1.0	<0.40	<1.0	<1.0	<1.0
Bromomethane	0.89	<0.50	-	<0.20	<0.50	<0.20	<0.50	<0.50	<0.80	<0.50	<0.50	< 0.50
Carbon Tetrachloride	5	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.79	<0.20	<0.20	<0.20
Chlorobenzene	30	<0.20	-	<0.10	<0.20	<0.10	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20
Chloroform	22	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
Dibromochloromethane	25	<0.50	-	<0.10	<0.50	<0.10	<0.50	<0.50	<0.40	<0.50	<0.50	< 0.50
1,2-Dichlorobenzene	3	< 0.50	-	<0.10	<0.50	<0.10	<0.50	<0.50	<0.40	<0.50	<0.50	< 0.50
1,3-Dichlorobenzene	59	< 0.50	-	<0.10	<0.50	<0.10	< 0.50	<0.50	<0.40	<0.50	<0.50	< 0.50
1,4-Dichlorobenzene	1	< 0.50	-	<0.10	< 0.50	<0.10	< 0.50	< 0.50	<0.40	< 0.50	< 0.50	< 0.50
Dichlorodifluoromethane	590	<1.0	-	<0.20	<1.0	<0.20	<1.0	<1.0	<0.80	<1.0	<1.0	<1.0
1.1-Dichloroethane	5	<0.20	-	< 0.30	<0.20	< 0.30	<0.20	<0.20	<1.20	1.3	0.33	<0.20
1,2-Dichloroethane	5	< 0.50	-	<0.20	<0.50	<0.20	< 0.50	<0.50	<0.80	<0.50	< 0.50	< 0.50
1,1-Dichloroethylene	14	<0.20	-	< 0.30	<0.20	< 0.30	<0.20	<0.20	<1.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethylene	17	< 0.50	-	<0.20	<0.50	<0.20	< 0.50	<0.50	<0.80	< 0.50	< 0.50	< 0.50
trans-1,2-Dichloroethylene	17	< 0.50	-	<0.20	< 0.50	<0.20	< 0.50	< 0.50	<0.80	< 0.50	< 0.50	< 0.50
1,2-Dichloropropane	5	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene	_	< 0.30	-		< 0.30		< 0.30	< 0.30		< 0.30	< 0.30	< 0.30
trans-1,3-Dichloropropene	0.5	<0.40	-	<0.30	<0.40	<0.30	<0.40	<0.40	<1.20	< 0.40	< 0.40	< 0.40
Ethylbenzene	2.4	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20
Ethylene Dibromide (1,2-Dibromoethane)	0.2	<0.20	-	<0.10	<0.20	<0.10	<0.20	<0.20	<0.25	<0.20	<0.20	<0.20
Hexane (n)	520	<1.0	-	<0.20	<1.0	<0.20	<1.0	<1.0	<0.80	<1.0	<1.0	<1.0
Methylene chloride (Dichloromethane)	50	<2.0	-	< 0.30	<2.0	< 0.30	<2.0	<2.0	<1.20	<2.0	<2.0	<2.0
Methyl ethyl ketone (2-Butanone)	1800	<10	-	<1.0	<10	<1.0	<10	<10	<4.0	<10	<10	<10
Methyl Isobutyl Ketone	640	<5.0	-	<1.0	<5.0	<1.0	<5.0	<5.0	<4.0	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	15	< 0.50	-	<0.20	<0.50	<0.20	< 0.50	< 0.50	<0.80	< 0.50	< 0.50	< 0.50
Styrene	5.4	< 0.50	-	<0.10	<0.50	<0.10	< 0.50	< 0.50	<0.40	< 0.50	< 0.50	< 0.50
1,1,1,2-Tetrachloroethane	1.1	< 0.50	-	<0.10	<0.50	<0.10	< 0.50	< 0.50	<0.40	< 0.50	< 0.50	< 0.50
1,1,2,2-Tetrachloroethane	1	< 0.50	-	<0.10	<0.50	<0.10	< 0.50	<0.50	<0.40	< 0.50	< 0.50	< 0.50
Tetrachloroethylene	17	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
Toluene	24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
1.1.1-Trichloroethane	200	<0.20	-	< 0.30	<0.20	< 0.30	<0.20	<0.20	<1.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	5	<0.50	-	<0.20	<0.50	<0.20	<0.50	<0.50	<0.80	<0.50	<0.50	<0.50
Trichloroethylene	5	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
Trichlorofluoromethane	150	<0.50	-	<0.40	<0.50	<0.40	<0.50	<0.50	<1.60	<0.50	<0.50	<0.50
Vinyl Chloride	1.7	<0.20	-	<0.17	<0.20	<0.17	<0.20	<0.20	<0.50	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	NV	<0.20	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20
o-Xylene	NV	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20
Xylenes (total)	300	<0.20	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20

All groundwater concentrations reported in μ g/L.

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold

Concentration exceeds MECP (2011) SCS. Non-detect but detection limit exceeds the MECP (2011) SCS.

Sample ID		BH/MW1S	DUP1S0 (Dup								
Sample ID	MOECC (2011) Table 2: Full Depth Generic	BIT/IVIVI 13	of BH/MW1S)								
Lab ID	SCS in a Potable Groundwater Condition	UFW592	UFW593								
Sampling Date	All Types of Land Use	8-Nov-22	8-Nov-22								
Screen Depth Interval (m)		3.05-6.10	3.05-6.10								
Consultant	(medium/fine textured soil)	BIG	BIG								
Laboratory		BV	BV								
Aroclor 1242	NV	-	-								
Aroclor 1248	NV	-	-								
Aroclor 1254	NV	-	-								
Aroclor 1260	NV	-	-								
Total Polychlorinated Biphenyls	3	<0.05	<0.05								
All groundwater concentrations reported in µg/L. '<' = Parameter below detection limit, as indicated 'NV'= No value											
Bold Concentration exc	eeds MECP (2011) SCS.										
Non-detect but de	tection limit exceeds the MECP (2011) SCS.										

Appendix C – Borehole Logs

RI	ECORD	OF BOREI	HOLE No	о. <u>Е</u>	3H/I	MW ²	1														11	B.L.G. Consultation
Proj	ect Number:	BIGC-ENV-457A					_		Drilling	Loca	ition:	Se	e Bor	ehole	Locati	on Pla	n			Logged	by:	AB
Proj	ect Client:	Distrikt Capital							Drilling	Meth	nod:	1	50 mm	1 Hol	low Ste	m Auç	gering			Compile	ed by:	AB
Proj	ect Name:	Preliminary Geot	echnical Inves	tigatio	n				Drilling	Mac	hine:	Tr	uck M	ount	ed Drill					Review	ed by:	SS
Proj	ect Location:	166 South Service	e Road East, O	akville,	, Ontar	io			Date S	tarted	1:	<u>27</u>	' Apr 2	1	_ Date	Compl	eted:	<u>27 Ap</u>	r 21	Revisio	n No.:	0, 28/5/21
	LITH	OLOGY PROFIL	.E	SO	IL SA	MPLI							STIN		\star Rinse	pH Valu			z			
	Geodetic Ground	DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	OS MTC ∆Ir ▲R	PT Vane ntact Remould	● ● ● ● Shear S	Testing DCPT ilcon V Intact Remo Strength (ane* uld (kPa)	∆ Soil ∆ parts 100	r Explos W	r Readi on (ppm) 300 4 ive Limit Liq	12 ing 400 (LEL) ₩L ■ 1µid 80	INSTRUMENTATION INSTALLATION	CO	MMEN	TS
	TOPSOIL: 150 FILL: clayey s soil inclusion: brown, damp	silt, trace sand, trace s, fragments of Shale	104.64_ gravel, top 0.2 e, dark	SS	1	95	8		104 -	0	• • • • • • • • •	* * * * * *	· · · · · · · · · · · · · · · · · · ·		o ¹⁴	* * * * * * * *	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •				
			103.27	SS	2	84	9	1	-	. <u>0</u> .	• • • • • •	• • • • • •			o ²	2						
	cLAYEY SILT gravel, fragmer moist, very st - grey	TILL: trace to some ents of Shale, reddis iff to hard	sand, trace 1.5 h brown,	SS	3	92	29	2	103 —		0				o ¹⁴	•••••••••••••••••••••••••••••••••••••••						
14/4/	3)		101.74	SS	4	70	41		102 —		:	0	· · · · · · · · · · · · · · · · · · ·		o ¹²	*	•					
	BEDROCK: S fragments of hard	hale, highly weather Limestone, reddish b	ed, 3.1	SS	5	57	50/8	- 3 	Z		•* • • • • • •	50 0 8			0 ¹¹	*****	* *** * * * * * * * * * *	•				
								4	101 -		• • • • • •	• • • • • • •			• • • • • • • •	• • • • • • •	*	••••••				
				SS	6	40	50/5	5	100 -		•	50 5			• • •							
									-		• • • • •	* * * * *	· · · · · · · · · · · · · · · · · · ·		• • • • •	* * * *	* * * *	•				
				SS	7	80	50/10	6	99 — Z		*	50 10			* * * * * * * * * * * *	••••••		• • • •				
								- 7	98 —		• • • •	•										
				S		100	50/5		97 —		* * * * *	50 5	· · · · · · · · · · · · · · · · · · ·		* * * *	* * * *	* * * *	* * * * * * * *				
								8			• • • • • • • • •	• • • • • • •				· · · · · · · · · · · · · · · · · · ·	* * * * * *					
				SS	- 9	100	50/8	9	96 —		• • • • • • • • •	50 8			• • • • • • • • • • •	•						
									95 —		• • • • •	8	· · · · · · · · · · · · · · · · · · ·		* * * * *	* * * *	* * * *	•				
								- 10			**************************************	50_			• • • • • • • • • • • • • • • • • • •	•••	•	••••••				
				- 88	10	100	50/3	- 11	94 —		· • • • • •	50 3				•••••	•					
								- 12	93 —		*	: : : : : : : : : : : : : : : : : : :	· · · · · · · · · · · · · · · · · · ·		* * * *	· · · · · · · · · · · · · · · · · · ·	*	•				
	End of Boreh	ole	92.57 12.2	- SS -		100	-50/3-	<u></u>			*	50 3	· · · · · · · · · · · · · · · · · · ·		*	*	* * * * * * * * * *	*	<u>; =:</u>			
	1. Borehole o 2. Ground wa upon completed	pen upon completior iter level reading at 3 tion of drilling. ter level reading at 6.	.66 m bgs								* * * * * * * * * * * *	* * * * * * * * * * * * *			•	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *				
12-5	. Consulting In 500 Tomken R issauga, ON La	d.	도 Groundw 도 Groundw						<u>3.66</u> <u>1</u> at a de		f:	<u>6.25 </u>	<u>m</u> .			ave in	depth r	recorde	ed on com	pletion of drilli	ng: <u>C</u>)pen m.
T: 41	6-214-4880 6-551-2633		Borehole details a qualified Geotee and the accompa	chnical E	ngineer.	Also, bor	ehole info	ormation	understan n should b	ding of e read	f all pote in conj	ential c unctior	ondition 1 with th	is pres e geot	ent and re echnical re	quires in port for	nterpreta which it	ative ass was cor	istance from	n		Scale: 1 : 74 Page: 1 of 1

RI	ECORD OF BOREHOLE No	э. <u>I</u>	BH/I	MW2	2							BLG. Consultation
-	ect Number: BIGC-ENV-457A							Location:		ble Location Plan		Logged by: AB
	ect Client: Distrikt Capital							Method:		ollow Stem Augering		Compiled by: AB
	ect Name: Preliminary Geotechnical Inves							Machine:	Truck Mour			Reviewed by: SS
Proj	ect Location: <u>166 South Service Road East, O</u>						_ Date S		27 Apr 21	Date Completed: 27 A	or 21	Revision No.: 0, 28/5/21
	LITHOLOGY PROFILE	SC	DIL SA							LAB TESTING ★ Rinse pH Values 2 4 6 8 10 12	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane △ Intact ▲ Remould * Undrained SI	 DCPT Nilcon Vane Intact Remould hear Strength (kPa 	Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) Wp W Plastic Liquid	NSTRUMENTATION NSTALLATION	COMMENTS
	Geodetic Ground Surface Elevation: 104.63 m TOPSOIL: 150 mm 104.48 FILL: clayey silt, trace gravel, top soil 0.2	ss	0 1	<u>∝</u> 51	<u>ہ</u>		<u> </u>	20 40	0 60 80	0 ¹³	22	
	inclusions, fragments of Shale, dark brown, moist, very soft to stiff 103.56	ss	2	84	15	- 1	104 -	0				
	CLAYEY SILT TILL: trace sand, trace gravel, 1.1 fragments of Shale, light brown, moist, stiff to hard						103 —		50_	o ¹²		
*****	- sandy - possible cobble/boulder	SS	3	90	50/15	2	103		50 15	0.4		Gr-1%; Sa-24%; Si-51%; Cl-25%
		SS	4	0	50/15		1 102		50 O 15			
	101.33	SS	5	32	50/10	- 3	-		50 O 10			
	BEDROCK: Shale, highly weathered, 3.3 fragments of Limestone, reddish brown, moist, hard		-				⊻101 <u>-</u>		10			
						4						
		ss	6	63	50/8		100 —		50 8		:≣:	
	grey					5	-					
							99 -					
	98.48		7	100	50/5	- 6			50		<u>::目::</u>	
	End of Borehole 6.2 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 3.66 m bgs upon completion of drilling. 3. Groundwater level reading at 2.64 m bgs on May 4, 2021.								5			
12-5	5. Consulting Inc. 500 Tomken Rd. Sissauga, ON L4W 2Z4 ada Sissauga, ON L4W 2Z4 T Groundw							_	2.64 m.	Cave in depth record	ed on corr	npletion of drilling: <u>Open m</u> .
T: 41	16-214-4880 Borehole details	as prese chnical E	nted, do i ingineer.	not const Also, bor	titute a the	orough	understan	ding of all pote	ntial conditions pr nction with the ge	resent and requires interpretative as otechnical report for which it was co	sistance from	m Scale: 1 : 74 Page: 1 of 1

RI	ECORD	OF BOREH	OLE No	о. <u>Е</u>	<u>3H3</u>																	B.LG. Consumer
Proj	ect Number:	BIGC-ENV-457A							Drilling	J Loca	ation:	Se	e Boreh	ole	Location	Plan				_ Logged by	r:	AB
Proj	ect Client:	Distrikt Capital							Drilling	g Metr	nod:	1	50 mm H	loll	low Stem	Auge	ring			_ Compiled	by:	AB
Proj	ect Name:	Preliminary Geotec	hnical Inves	tigatio	n				Drilling	y Mac	hine:	Tr	uck Mou	inte	ed Drill					_ Reviewed	by:	SS
Proj	ect Location:	166 South Service F	Road East, O	akville,	, Ontar	io			Date S	tarteo	1:	<u>27</u>	Apr 21		_ Date Co	omplet	ed: <u>27</u>	Apr	21	Revision N	lo.:	0, 28/5/21
	LITH	OLOGY PROFILE		SO	IL SA	MPLI				F	IELC) TE	STING		LAB ★ Rinse p		TING		z			
Lithology Plot	Goodotic Ground	DESCRIPTION	12 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O S MTC △ II ▲ F	SPT D Vane ntact Remould frained \$	● ●* N ◇ ●	Testing DCPT ilcon Van Intact Remould Strength (kPa 50 80		2 4 Soil Va parts pe 100 2 ▲ Lower E W _P Plastic	6 8 apour F er million 200 30 Explosive W			INSTRUMENTATION INSTALLATION	COMN	/IEN	TS
	TOPSOIL: 150 FILL: clayey s inclusions, fra		104.97 1 0.2	SS	1	70	32		105 -		0		· · ·		o ¹⁸	•						
	- silty sand, t ∖brown moist,		lusion1, 04/18 5 1.1/	SS	2	95	10	- - 1	104 -	·					o ¹⁴							
	gravel, fragme to hard - sandy silt/s	TILL: trace to some sa ents of Shale, brown, n ilty sand till, trace grave	noist, stiff el,	SS	3	95	28		-		0	•	· · · · · · · · · · · · · · · · · · ·		o ¹³	•						
19191	fragments of compact	Shale, light brown, , m	oist,	SS	4	E 4	45	- 2	103 -			0			0 ¹³	<pre></pre>						
		hale, highly weathered		SS	4	54 53	45 50/15	3	102 —		•	50 15										
	fragments of hard	Limestone, grey, moist	to damp,						-		•		• • • • • • • • • • • • • • • • •		•	•						
			100.50					4	101 -			50				· · · · · · · · · · · · · · · · · · ·						
	End of Boreho	ole pen upon completion c	4.6		-6	_100_	50/5	-			•	5	* * * * * * * * * * * * * *		*	•						
BIG																						
12-5 Miss Can		d. 4W 2Z4	∑_ Groundw																	ion of drilling:	<u> </u>	pen m.
F: 4	16-214-4880 16-551-2633	a	Borehole details a a qualified Geoted and the accompa	chnical E	ngineer.	Also, bor	ehole infe	ormatio	understan n should b	iding o be read	f all pote in conj	ential c unctio	onditions p n with the g	eote	ent and requection of the second second second second second second second second second second second second s Second second s	ires inte ort for w	erpretative hich it was	assis com	stance from misioned			Scale: 1 : 74 age: 1 of 1

RI	ECORD	OF BORE	HOLE No	о. <u>I</u>	BH/I	MW4	<u>4</u>												10	B.LG. Consultivity he
Proj	ect Number:	BIGC-ENV-457A							Drillinę	g Location:	<u>Se</u>	e Boreho	le Lo	cation	Plan			Logged	l by:	AB
	ect Client:	Distrikt Capital								g Method:		50 mm H			Auge	ing		Compil		AB
	ect Name:	Preliminary Geot								g Machine:	_	uck Mour						Review		SS
Proj	ect Location:	166 South Servic							Date S	Started:	_	Apr 21	D			ed: <u>27 A</u>	pr 21	Revisio	n No.:	0, 28/5/21
lot		OLOGY PROFIL	.E						(m) N		tration	STING Testing DCPT Icon Vane	2 4	Rinse pH 2 4 Soil Va parts pe	TES 1 Values 6 8 apour F r million		NTATION TION	CO	MMEN	ITS
Lithology Plot	Geodetic Ground	Surface Elevation: 1		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION	 △ Intact ▲ Remout 	ld 🗳	Intact)	Lower E W _P Plastic		Limit (LEL) W _L Liquid	I I I INSTRUMENTATION INSTALLATION			
	200 mm grani	ilt, trace sand, trace	. 105.19	SS	1	59	4		105 -	0	• • • • •	• • • • • • • • • • • • • • •		o ¹⁷	· · · · · · · · · · · · · · · · · · ·	* * * *				
	CLAYEY SILT	TILL: trace sand, tra Shale, reddish brown	ce gravel, 0.8	SS	2	59	38		-		0		···· _ò 1	0		• • • • • • •				
				SS	3	33	53	2	104 —		0		c	14			* 4			
	BEDROCK: SI fragments of L to damp, hard	hale, highly weather Limestone, reddish b	103.30 ed, 2.3 prown, moist	SS	4	29	50/13		103 -		50 0 13		0	12	• •	* * * * * *				
				SS	5	33	50/15	3	7		50 0 15			-	· · · · · · · · · · · · · · · · · · ·	- - - - - - - -				
								4	I 102 –											
				SS	6	100	50/13	2	Z 101 -		50 13	• • • • • • • • • • • • • • • • • • • •		•	· · · · · · · · · · · · · · · · · · ·	* * * * * * *				
								5	-						· · · · · · · · · · · · · · · · · · ·	• • • • •	* *			
								6	100 -		50 8					• • • •	* *			
				SS		63	50/8		99 -		8	• • • • • • • • • • • • • • • • •		•	· · · · · · · · · · · · · · · · · · ·	* * * *				
								7						•		• • • • • • • • •				
					8	60	50/5	8	98 -		50 5					•				
									97 -		•	• • • • • • • • • • • • • • •		•	· · · · · · · · · · · · · · · · · · ·	* * * * * *				
					9	100	50/3	9	-		50 0 3			· · · · · · · · ·		* • • • • • •				
								- - - 10	96 -					•		•				
					10	100	50/3		95 -		50 3	• • • • • • • • • • • • • • • • •		• • • •	· · · · · · · · · · · · · · · · · · ·	* * * * *				
								11								* * * * * *				
								- 12	94 -		FO				• • • •					
F	End of Boreho	ble	<u>93.37</u> 12.2		11	100	50/3	F	:		50 3	· · ·		•	· · · · · · · · · · · · · · · · · · ·	- + + + + + + + +	<u>. ⊨.</u>			
	 Borehole op 2. Ground wat upon complet 	pen upon completion ter level reading at 4 ion of drilling. er level reading at 3.	.57 m bgs								* * * * * * * * * * * * *									
12-5	5. Consulting Ind 500 Tomken Ro sissauga, ON L4	d.	도 Groundw 도 Groundw						<u>4.57</u> 1 at a de		<u>3.46</u>	<u>n</u> .	í	Cav	e in de	pth recore	ded on com	pletion of drill	ing: <u>(</u>	<u>Dpen m</u> .
T: 41	16-214-4880 16-551-2633		Borehole details a a qualified Geoted and the accompa	chnical E	ngineer.	Also, bor	ehole info	ormation	understar n should l	nding of all po be read in co	otential o	onditions pr with the ge	esent a otechni	nd requi cal repo	ires inte ort for wh	rpretative a lich it was c	ssistance from ommisioned	n		Scale: 1 : 74 Page: 1 of 1

R	ECORD	OF BORE	HOLE No	о. <u>в</u>	BH5																BLG. Governie he
Proj	ect Number:	BIGC-ENV-457A							Drilling	g Loca	tion:	See	Boreho	le L	ocation	Plan			Logged I	oy:	<u>AB</u>
	ect Client:	Distrikt Capital							Drilling				0 mm He			Augei	ring		Compile	d by:	AB
-	ect Name:	Preliminary Geot							Drilling				ck Mour						Reviewe		SS
Proj	ect Location:	166 South Service							Date S	_			Apr 21	_			ed: <u>27 Ap</u>	or 21	Revision	No.:	0, 28/5/21
	LITH	OLOGY PROFIL	.E	SC	NL SA	MPLI				-			TING	*	LAB Rinse pH	Values		z			
Lithology Plot		DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SI MTC ∆ In ▲ Ri * Undr	Vane* tact emould	● Nilo ◆ ear Str	DCPT con Vane Intact Remould rength (kPa)		Soil Va parts per 100 20	plosive W	eading (ppm) 0 400 Limit (LEL) W _L Liquid	INSTRUMENTATION INSTALLATION	COM	IMEN	TS
	200 mm gran	silt, trace sand, trace	105.22	SS	1	67	9		105 —	0			• • • •		_o 20		* * * * *				
	g. ey, . e. ye	,		SS	2	75	6	- 1	-	0		•••••	· · · · · · · · · · · · · · · · · · ·				• • • • • •				
	CLAYEY SILT fragements o hard	TILL: trace sand, trac f Shale, reddish brow	104.10 ce gravel, 1.5 vn, moist,	SS	3	95	35	2	104 —		0	;			o ¹³		• • • •				
	BEDROCK: S fragments of to damp	hale, highly weathere Limestone, reddish b	103.33 ed, 2.3 prown, moist	SS	4	38	50/13		103 —		<u>ب</u>	i0 3	* * * * * * *				• • • • •				
	grey			SS	5	20	50/5	3	-		ų	0 0 5	• • • • • • •				* * * * * * *				
								4	102 -												
	End of Boreh	ole	<u>101.00</u> 4.6		-6	60	50/3	-	101		5	i0 3	* * * * * * * * * *		-						
	Notes: 1. Borehole o 2. Brehole dr	pen upon completior y upon completion of	n of drilling. drilling.										* * * * * * * * * * * * *				6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				
												* * * * * * * * * * * * * * * * * * * *									
												* * * * * * * * * * * * * * * * * * * *	- - - - - - - - - - - - - - - - - - -								
													- - - - - - - - - - - - - - - - - - -								
											- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	•	- - - - - - - - - - - - - - - - - - -								
12-5 Miss	5. Consulting In 500 Tomken R sissauga, ON L	d.	폋 Groundw	ater de	pth on (complet	ion of d	rilling:	<u>Dry n</u>	<u>1</u> .			*	1	Cave	e in de	pth record	ed on comp	letion of drillin	g: <u>C</u>	pen m.
Cana T: 41	ada 16-214-4880 16-551-2633		Borehole details a qualified Geote and the accompa	chnical E	ngineer.	Also, bor	ehole info	ormation	understan n should b	iding of be read i	all poter in conju	tial contraction to	nditions pro with the geo	esent otech	and requir	res inter t for wh	rpretative ass ich it was co	sistance from mmisioned			Scale: 1 : 74

R	ECORD	OF BOREHOL	E No.	. <u>E</u>	3H/I	MW	<u>}</u>							10	B.I.G. Goneutrice Inc
	ect Number:	BIGC-ENV-457A								Location:		e Location Plan		Logged by:	AB
-	ect Client:	Distrikt Capital								Method:	-	Ilow Stem Augering		Compiled by:	AB
-	ect Name:	Preliminary Geotechnica								Machine:	Truck Mount		. 04	Reviewed by:	<u>SS</u>
Pioj	ect Location:	166 South Service Road	East, Oak						Date S		27 Apr 21	_ Date Completed: 27 Apr	21	Revision No.:	0, 28/5/21
	LITH			so	il sa	MPLI					tionTesting	LAB TESTING	z		
Lithology Plot	Geodetic Groun	DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane [*] △ Intact ▲ Remould	DCPT Nilcon Vane* Intact Remould ear Strength (kPa)	2 4 6 8 10 12 Soil Vapour Reading Δ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W ₀ W W ₁ — — — — — Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMEN	ITS
	ASPHALT PA 200 mm gran	VEMENT: 200 mm asphalt ov	/er 105.26	SS	1	62	2	-		p	**************************************	o ²⁵			
	very loose CLAYEY SILT		104.90 I, 0.8	SS	2	67	36	- 1	105 -	ō					
	occasional Li	hale, highly weathered, mestone layers, reddish brov	104.14 1.5 vn,	SS	3	81	50/15		104 —	e e e	0 0	o ⁶			
	moist, hard		=	ss	_4	60	50/5	2	-	Ę	50 0 5	o ¹¹			
								- 3	103 —		• •				
				SS	5	53	50/15	=			50 5	o ⁵			
								- 4 - 4	102						
			=	88	-6	100-	50/3		101 -	Ę	50 O 3				
								5	-						
									100 -						
	End of Boreh	ole	99.53 6.1	ss	-7	100	50/3	_ 6			50 0 3		: <u> </u>		
	upon comple	pen upon completion of drilli iter level reading at 4.27 m by tion of drilling. er level reading at 3.39 m bg													
12-5	5. Consulting In 500 Tomken R sissauga, ON L	d. = 0	Groundwate								 .39 m.	Cave in depth recorde	d on completi	on of drilling:	<u>Open m</u> .
Cana T: 41 F: 41	ada 16-214-4880 16-551-2633	Borehol a qualifi	le details as	presen nical Er	ited, do r naineer.	not const Also, bor	itute a tho ehole info	orough	understan	ding of all poter	tial conditions pre	sent and requires interpretative assi technical report for which it was con	stance from nmisioned		Scale: 1 : 74

	ECORD OF BORE). <u>I</u>	BH7				Drilling	Location:	S	e Boreho	e Locat	ion Pla	ın			Logged by:	AB
	ject Client: Distrikt Capital	•							Method:		50 mm Ho						Compiled by:	
		otechnical Invest	tigatio	n				Drilling	Machine:	T	uck Moun	ted Dril	I				Reviewed by:	SS
Proj	ject Location: <u>166 South Serv</u>	ice Road East, Oa	akville	, Ontar	rio			Date S	tarted:	28	Apr 21	_ Date	e Compl	eted: <u>28</u>	3 Apr	21	Revision No.:	0, 28/5/21
-	LITHOLOGY PROF	ILE	SC	NL SA	MPLI	NG			FIEL	D TE	STING	L	AB TE	STING				
Lithology Plot	DESCRIPTIO	N	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Van △ Intact ▲ Remould * Undrained	● e* N ◇ 1 ◆ Shear S		Soi △ part 100	ver Explos W	r Reading on (ppm) 300 400 ive Limit (LE) EL)	INSTRUMENTATION INSTALLATION	СОММЕ	NTS
	ASPHALT PAVEMENT: 200 mm 200 mm granular bases FILL: clayey silt, trace sand, sor gravel, dark brown, moist, soft	. 105.40	SS	1	25	4		-	0	•	* * * * * * * * * * * * * *	0	23					
1111	CLAYEY SILT TILL: trace sand, fragments of Shale, reddish bro	race gravel, 0.8	SS	2	75	44	1	105 —		0	· · · · · · · · · · · · · · · · · · ·		22					
			SS	3	71	50/13	2	104 -		50 13		o ¹²						
1111			SS	4	42	50/15		103 -		50 15	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	o ⁷	•					
12	BEDROCK: Shale, highly weath		SS	5	63	50/8	- 3 -			50 0 8	· · · · · · · · · · · · · · · · · · ·	••••••		••••••				
	occasional Limestone layers, re damp, hard	ddish brown,						102 —		•	• • • • • • • • • • • • •	•	* * * *					
							4	-			· · · · · · · · · · · · · · · · · · ·	••••••	••••	•••••••••••••••••••••••••••••••••••••••				
	End of Borehole	101.20 4.6	-88	-6	100	50/3	-			50 3	• • • • • • • • • • • •		•	· · ·				
	Notes: 1. Borehole open upon complet 2. Borehole dry upon completio	ion of drilling. n of drilling.																
BLC	Consulting Inc.	√ -				<u> </u>			* * * *	•	* * * * * * * * * *		*					
12-5 Miss Can T: 4	500 Tomken Rd. sissauga, ON L4W 2Z4 ada 16-214-4880	Groundwa								ential	onditionen					d on completi	on of drilling:	<u>Open m</u> .
F: 4 ⁻	16-551-2633	a qualified Geotec and the accompar	hnical E	naineer.	Also, bor	ehole infe	ormatio	n should b	e read in con	junctio	n with the geo	technical	report for	which it wa	as con	nmisioned		Scale: 1 : 74 Page: 1 of 1

R	ECORD	OF BOREHOLE N	o. I	BH/I	MW8	3							10	B.LG.
	ject Number:	BIGC-ENV-457A	-			-		Drilling	Location:	See Boreho	ble Location Plan		Logged by:	AB
Pro	ject Client:	Distrikt Capital						Drilling	Method:	150 mm H	ollow Stem Augering		Compiled by:	AB
Pro	ject Name:	Preliminary Geotechnical Inves	tigatio	n				Drilling	Machine:	Truck Mour	nted Drill		Reviewed by:	SS
Pro	ject Location:	166 South Service Road East, O	akville	, Ontai	rio			Date S	started:	28 Apr 21	Date Completed: 28 Apr 2	1	Revision No.:	0, 28/5/21
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	Geodetic Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane △ Intact ▲ Remould	 Intact Remould near Strength (kPa) 	★ Rinse pH Values 2 4 6 10 12 Soil Vapour Reading a parts per milion (ppm) 10 20 300 400 ▲ Lower Explosive Limit (LEL) We, W W W W 10 10 ■ Lower Explosive Limit (LEL) We, W W W W 10 10 ■ Control = 0 ■ Control = 0 ■ Control = 0 ■ Control = 0 10 <td>INSTALLATION</td> <td>COMMEN</td> <td>ITS</td>	INSTALLATION	COMMEN	ITS
	200 mm gran	VEMENT: 200 mm asphalt over ular bases 105.23 d gravel, dark brown, moist, 0.4	SS	1	13	7		105 -	0		o ⁸			
		some sand, trace gravel, dark soft	SS	2	75	6	- 1		o					
		104.11 TILL: trace sand, trace gravel, 1.5 Shale, reddish brown, moist, very	SS	3	84	26	- 2	104 -	0		o ¹⁸	Gr-2%	; Sa-3%; Si-63 ⁰	%; CI-35%
			SS	4	79	40		103 -)	o ¹⁰			
1.F	BEDROCK: S occasional Li	102.58 hale, highly weathered, 3.1 mestone layers, reddish brown,	SS	5	70	49	3			0				
	moist to dam	p, hard				-10	- 4	102 -						
				6	60	50/5		101 -		50 5				
							5 = 5 =	Z :						
							Ē	100 -		· · · · · · · · · · · · · · · · · · ·				
_	End of Boreh	99.50 6.1	SS	7	100	50/3	6			50 3	· · · · · · · · · · · · · · · · · · ·	<u>=:-</u>		
	Ground wa upon complet	er level reading at 3.01 m bgs on												
12-5	6. Consulting In 5500 Tomken R	d. = Glouidw						<u>4.88</u>		• •	Cave in depth recorded	on completio	n of drilling:	<u>Open m</u> .
Can T: 4	sissauga, ON L4 ada 16-214-4880 16-551-2633	Borehole details	as prese chnical E	nted, do ingineer.	not const Also, bor	itute a the ehole infe	orough u	understar	iding of all pote	3.01 m. ntial conditions pr nction with the ge	esent and requires interpretative assist otechnical report for which it was comm	ince from isioned		Scale: 1 : 74

R	ECORD	OF BORE	HOLE No	о. <u>в</u>	3H9	1																10	B.LG. CONSULTING
Pro	ject Number:	BIGC-ENV-457A							Drilling	Loca	ation:	Se	e Bor	rehole	e Loc	ation	Plan				Logged	by:	AB
Pro	ject Client:	Distrikt Capital							Drilling	Meth	nod:	15	50 mn	n Ho	llow	Stem	Auge	ring			Compile	d by:	<u>AB</u>
Pro	ject Name:	Preliminary Geot	echnical Invest	tigatio	n				Drilling	Mac	hine:	Tr	uck N	lount	ed D	rill					Reviewe	ed by:	<u>SS</u>
Pro	ject Location:	166 South Service	e Road East, O	akville	, Ontar	io			Date S	tarteo	d:	<u>28</u>	Apr 2	21	_ Da	ate Co	mplete	ed: <u>28</u>	Арг	r 21	Revision	No.:	0, 28/5/21
	LITH	ology profil	.E	SC	IL SA	MPLI				F	IELD	D TE	STIN	G			TES Values	TING		7			
Lithology Plot	Geodetic Ground	DESCRIPTION	05.46 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O S MTC △ II ▲ F	SPT D Van ntact Remould drained :	e* Ni ☆ d ∳ Shear S	DCP Icon V Intact Remo	T /ane* t puld (kPa)	2 ▲ p 1 ▲ L ↓	4 oil Va arts per 00 2 ower E N _P Plastic	6 8 pour F million 00 30	10 1 Reading (ppm) 00 400 Limit (LE W _L Liquid	L)	INSTRUMENTATION INSTALLATION	COM	IMEN	тѕ
	200 mm gran FILL: silty sar	VEMENT: 200 mm as Jular bases Ind, trace gravel, brow	105.06	SS	1	67	6		105 —	0			*	* * * *	0	14							
	loose - clayey silt, brown, moist	some sand, trace gra , soft	avel, dark	SS	2	75	4	- - 1 -	-	0	• • • •	•	• • • • • •	• • • • • •		o ²⁴	•						
W	SILTY CLAY	CLAYEY SILT TILL: tra	103.94 ace sand, 1.5	SS	3	207	8	Ē	104 -	0			•	•		18							
	trace gravel, f brown, moist	fragments of Shale, r to damp, firm to harc	eddish J		5	207	0	2	-				•	• • • • • •		• • • • •							
			102.41	SS	4	83	50/31		103 —		•	50 0 31	•		°7	• • • • •	•						
	BEDROCK: S fragments of hard	hale, highly weathere Limestone, reddish b	ed, 3.1	SS	5	80	50/10		102 -		•	50 10	*	•	°0 ^{6°°}	• • • •	• •						
								4	-		• • • •	•	• • • • •			• • • • • •							
	End of Boreh	ole	100.84 4.6		-6	-60-	50/5	<u> </u>	101 -			50 5	*	* * * *	°6		· · ·						
	Notes: 1. Borehole o 2. Borehole d	pen upon completion ry upon completion o	n of drilling. of drilling																				
	5. Consulting In 5500 Tomken R		모 프 Groundw	ater de	pth on d	complet	l tion of d	lrilling:	<u>Dry n</u>	<u> </u>	•	:	*	*		: Cav	e in de	pth rec	orde	d on compl	etion of drillir	ng: <u>C</u>)pen m.
Miss Can T: 4	sissauga, ON L		- Borehole details a a qualified Geotec and the accompa	as preser chnical E	nted, do r	not const Also, bor	itute a the	orough	understan	ding o e read	f all pot in conj	ential c junctior	ondition with th	ns pres ne geot	sent an echnic	d requi al repo	res inte rt for wł	rpretative nich it wa	e assi s con	stance from nmisioned			Scale: 1 : 74 'aqe: 1 of 1

RE	ECORD	OF BOREHOLE	No.	BH/	MW	10														10	B.LG.
	ect Number:	BIGC-ENV-457A						Drilling	g Loca	ition:	Se	e Bore	hole	e Locati	ion Pla	an			Logge	d by:	AB
Proj	ect Client:	Distrikt Capital						Drillin	g Meth	nod:		i0 mm oring	Hol	llow Ste	em Au	gering	j + Ro	ck	Compi	led by:	AB
Proj	ect Name:	Preliminary Geotechnical In	vestigatio	on				Drilling	g Mach	hine:	Tri	uck Mo	ount	ed Drill					Review	ved by:	SS
Proj	ect Location:	166 South Service Road East	t, Oakville	e, Onta	rio			Date S	Started	1:	<u>28</u>	Apr 21	1	_ Date	Comp	leted:	<u>28 A</u>	pr 21	Revisi	on No.:	0, 28/5/21
	LITH		SC	DIL SA	AMPLI				F	IELD	TES	STING	•		AB TE		IG	7			
				- Le		SPT 'N' Value/RQD%		Ē	F OS			DCPT		2	4 6 Vapou s per mil	8 1) 12 ding	INSTRUMENTATION			
Plot		DESCRIPTION	lype	Aumbe	(%)	/alue/	Ē	NO	мтс) Vane	* Ni	Icon Va	ane*	100	s per mill 200 er Explos	300	400		CO	MMEN	ITS
Lithology Plot			Sample Type	Sample Number	Recovery (%)	1.N'	DEPTH (EVATION	A R	Remould	•	Remou trength (k		W _P Plas	. w		W_ ́	TALL			
Lith	Geodetic Groun	Surface Elevation: 105.44 m VEMENT: 200 mm asphalt over	Sar	Sar	Rec	SP.	DE	ELE		20 4		0 80		20	40	60	iquid 80	NSN NSN			
****	200 mm gran			1	62	9	Ē	105 -	0					o ¹⁵							
××	moist, loose	TILL: trace sand, trace gravel,	68				ŧ														
	reddish brow	n, moist, firm	SS	2	95	6	- 1 -		ю					o ¹⁶		••••••					
							Ē	104 -						10							
	- very stiff		SS	3	62	21	2		- - -	0				o ¹²					Gr-1%; Sa-29	%; Si-589	%; CI-39%
1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	- occasional	fragments of Shale, hard	SS	4	67	50/15	ŧ	103 -			50 15			o ¹¹	•	•	•				
		100	~~				Ē									•	•				
		102. hale, highly weathered to 3 lity, occasional limestone layers,	39 3.1 <u>SS</u>	5	77	50/13	- 3 -				50 13			o ¹⁶		•••••					
	reddish brow	n to grey, damp to moist					Ē	102 -						•	•	•	•				
							4		<u>.</u>												
							Ē	101 -			50					:	•				
			SS	6	63	50/8					50 8										
							- 5							•••••		•••••					
							Ē	100 -						• • •	•	•	•				
				7	60	50/5	6				50 0 5										
			00				Ē	99 -		-	5					:	-				
							Ē								•	•	•				
							- 7 -		1					••••••	••••	•••••					
				8	+0-	50/3	Ē	98 -			50 0 3					•	•				
							- 8									••••••					
							Ē	97 -						•	•	•	•				
							E E 9				_										
				9	100	50/3			1		50 0 3					:					
							Ē	96 -						•	•	•	•				
							E 10									•••••••••					
							Ē	95 -			50_			•	•	•	•				
		ROCK CORE BEGINS	33 RC	10	60 57	50/5 0	- 11		_		0 5										
	- Very Poor C	uality					ŧï	0.4	Ĩ						•	•	•				
	grey						Ē	94 -							•	•	•				
	- Good Qualit	у	RC	2	96	86	- 12						<u>о</u>			•••••					
							Ē	93 -						:	• • •	:	•				
					-		- 13		.												
							Ē	92 -							•	•	:				
	- Good Qualit	у	RC	3	100	87	Ē	92 -		-			0			:					
	G. Consulting Inc.													Open m.							
Miss	LD: Consulting inc. ↓ Groundwater depth on completion of drilling: Core water m. ■ Cave in depth recorded on completion of drilling: Open r 2-5500 Tomken Rd. ↓ Groundwater depth observed on 04/05/2021 at a depth of: 18.28 m. anada ↓ Groundwater depth observed on 04/05/2021 at a depth of: 18.28 m.													<u> </u>							
T: 41	16-214-4880 16-551-2633	Borehole det a qualified Ge	ails as prese eotechnical I	ented, do Engineer	not const . Also, bor	titute a the	orough u	understar	ndina of	f all pote	ntial co	onditions with the	s pres geot	ent and rechnical r	equires report fo	interpre r which	tative as it was co	sistance f	irom ed		Scale: 1 : 7
		and the acco	mpanying'N	otes to R	ecord of E	Boreholes	s'.													F	Page: 1 of

Continued on Next Page

			MW1	-						the the
ect Number: BIGC-ENV-457A					[Drilling		ole Location Plan		Logged by:
LITHOLOGY PROFILE	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Van △ Intact ◇ Intact A Remould ◆ Remould		INSTRUMENTATION INSTALLATION	COMMENTS
BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist					Ē					
- Good Quality	RC	4	100	81	15	90 -				
- Good Quality	RC	5	100	85	— 16 — 17	89 —	o			
- Excellent Quality	RC	6	100	95	- 18 - ₹	88		0		
- Good Quality	RC	7	100	84	- 19	86 -	o			
 clay seam, trace gravel, shale inclusion, grey, very moist - Fair Quality	RC	8	79	54	21	84	0			
- Excellent Quality 81.97	RC	9	100	91	- 23	83		5		
End of Borehole 23.5 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 18.28 m bgs on May 4, 2021.		nted do		the a th			ring of all notential conditions of	resent and requires interpretative as	sistance from	
	LITHOLOGY PROFILE DESCRIPTION DESCRIPTION EDEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist - Good Quality - Good Quality - Excellent Quality - Cood Quality - Fair Quality - Excellent Quality - Excellent Quality - Excellent Quality - Excellent Quality - Excellent Quality - Somothic grey and the inclusion, grey, - Tair Quality - Excellent Quality - Somothic grey and the inclusion grey, - Tair Quality - Somothic grey and the inclusion of drilling Source gravel, shale inclusion, grey, - Tair Quality - Excellent Quality - Somothic grey and the inclusion of drilling Source gravel and the inclusion of d	LITHOLOGY PROFILE SC DESCRIPTION ag. group BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist RC - Good Quality RC - Good Quality RC - Good Quality RC - Excellent Quality RC - Good Quality RC - Fair Quality RC - Fair Quality RC - Excellent Quality RC - Fair Quality RC - Excellent Quality RC - Fair Quality RC - Stored Gravel (shale inclusion, grey, error) RC - Fair Quality 23.5 - Fair Quality 23.5 - Stored Could (shale inclusion of drilling). Stored (shale inclusion) - Stored Vality 23.5 - Stored (shale inclusion of drilling). Stored (shale inclusion) - Stored (shale inclusion) Stored (shale inclusi) - Stor	LITHOLOGY PROFILE SOIL SA DESCRIPTION and and and and and and and and and and	LITHOLOGY PROFILE SOIL SAMPLI DESCRIPTION ag. big of a state of a stat	LITHOLOGY PROFILE SOIL SUMULAN DESCRIPTION a, a, b,	LITHOLOGY PROFILE SOIL SMPLING Image: Solid So	LITHOLOGY PROFILE SOL SAMPLING Image: Sol Sampling and Sampling a	LITTer Cody PROFILE SOL SAMPLING FIELD TESTING DESCRIPTION all block block	LITHOLOGY PRCFILE SOIL SAMPLING FIELD TESTING LAB TESTING DESCRIPTION 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	LITHOLOGY PROFILESOL SAMPLINGFIELD TESTINGLAB TESTINGDESCRIPTION $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

R	ECORD	OF BOREHO	LE No	5. [<u>BH/</u>	MW	<u>201</u>														10	B.L.	G.
		BIGC-ENV-457B							Drilling	g Loca	tion:	See	e Boreho	le Lo	catio	n Plai	ı			Logge	ed by:	кк	
Proj	ject Client:	Distrikt Capital							Drilling	g Meth	od:		<u>0 mm Ho</u> ring	ollow	Sten	n Aug	ering	+ Ro	ck	Comp	iled by:	кк	
Proj	ject Name:	Additional Geotechnic	cal Investi	igatior	۱				Drilling	g Macł	nine:	Tru	ick Moun	ted D	Drill					Revie	wed by:	SS	
Proj	ject Location:	166 South Service Roa	ad East, C	Dakvill	e, Ont	ario			Date	Starteo	1:	22	May 3	_ Da	ate C	omple	ted: 2	2 Ma	y 4	Revis	ion No.:	<u>0, 22-7</u>	-5
	LITH	OLOGY PROFILE		SC	IL SA	MPLI	-			F	ELD .	TES	TING			TES	TING	ì	7				
Lithology Plot		DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	EVATION (m)	O SF MTO ∆ Int ▲ Re	Vane* tact emould	● Nilc ◆	esting DCPT con Vane* Intact Remould rength (kPa)	2 △ p 1 ▲ L	4 Soil Va parts pe	6 8 apour F er million 200 3		g 0 EL) /	INSTRUMENTATION INSTALLATION	СС	MMEN	ITS	
Litt	ASPHALT PA	d Surface Elevation: 105.77 VEMENT: 70 mm asphalt ov	ver105.57_					Ë		2	0 40	60 60) <u>8</u> 0 :	:	20	40 e	i0 80	Ď	žž R				
		silt, trace sand, trace gravel,	0. 2 105.01	SS	1	54	7			0	:	•		o ¹	u	-							
* * * * * * *		, moist, firm ☐ TILL: trace to some sand, f fragments, reddish brown to	trace 0.8	SS	2	100	33		105 -		0			····o ¹	1								
	drov		ľ	SS	3	100	92/28cn		104 -				92 28cm	٥7									
	- grey	hale, highly weathered to ex	103.48	ss	4	80	50/10cn	<u> </u>			5	0				****** * *							
		ional limestone layers, reddis						Ē	103 -		10cr	m :	•										
			=	-88	-5	60	50/5cm	- 3 -			5	0 0 11											
									102 -						-		· · ·						
								4															
				SS	6	100	50/13cn	Ē	101		5	0	•										
								E 5	101 -		13cr	n 			•								
				ss	7	80	50/10	6	100 -		5	0	•										
			ľ	- 33		00		Ē			1	0			-		· · ·						
								E 7	99 -			;				: :							
													•		-		· · ·						
								8	98 -														
											:				-								
									97 -				-				· · ·						
								— 9 E					* * * * * * * * * * * *				· · · · · · · · ·						
									96 -														
								- 10 -			•••••					:							
									95 -								· · ·						
								- 11 F		·····	•••••		•••••				· · · · · · · · · · · · · · · · · · ·						
									0.4			•	•		-		· · ·						
								- 12	94 -		•••••					: :							
	- Very Poor Q	ROCK CORE BEGINS		RC	1	100	17			0	•	•	•			* * *	· · ·						
		acouty	ŀ					- 13	93 -	.						: :							
											•	•				-	· · ·						
	- Fair Quality			RC	2	100	53	E - 14	92 -	1		0				; ;							
								Ē			:	-	-										
								- 15	91 -	1		• • • •				- - - - -	· · · · · ·						
	-Fair Quality			RC	3	100	63					C	C				· · · · · · · · · · · · · · · · · · ·						
								E	90 -							•							
12-5 Miss	5. Consulting In 500 Tomken Rd issauga, ON L4	1. =	No freesta Groundwa								ompletio		drilling.		Cav	ve in de	epth rec	cordeo	d on comple	etion of drillir	ig: <u>Op</u> e	en m.	
	ada 16-214-4880 16-551-2633	Borel	hole details a a qualified G misioned and	as prese ieotechn	nted, do ical Engi	not cons	titute a th	norough ole infor	understa mation s	nding of	all poter	ntial co	onditions pr nction with t	esent a he geo	and req technic	uires in al repo	terpreta rt for wh	tive as nich it v	sistance was			Scale: 1	

	CORD OF BOREHOLE N	o.	BH/	MW	201	-								BLG. CONNENSE
Proj	ect Number: BIGC-ENV-457B					D	rilling	-	See Boreh				-	Logged by: KK
	LITHOLOGY PROFILE	SC	DIL SA	MPLI					TESTING ationTesting		LAB T Rinse pH V 4 6	ESTING	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould	 DCPT Nilcon Vane Intact Remould hear Strength (kP 	e* 1 A p 1 A L N a) P	Soil Vapo parts per m 100 200 ower Explo W _P	8 10 12 Dur Reading illion (ppm) 300 400 osive Limit (LEL) W W Liquid 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown, moist, hard - Good Quality	RC	4	100	80	17	89 -		Ö					
	- Good Quality	RC	5	100	86	- 18 - ▼	88 -		0					
	- Good Quality	RC	6	100	80		86 –		Ō					
	- Very Poor Quality	RC	7	100	18	- 21	85 -	0						
	- Excellent Quality	RC	8	100	98	23	83 -			<u> </u>				
	- Good Quality	RC	9	100	84	- 24 -	82 -		o					
	- Good Quality	RC	10	100	84	26	80 -		o					
	- Good Quality	RC	11	100	84	27	79 -		0					
	- Good Quality	RC	12	100	83	29	77 —		o					
	- Excellent Quality 75.17	RC	13	100	98	30	76 -			0				
	End of Borehole 30.6 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 18.59 m bgs on May 31, 2022.													
	Borehole details from a qualified commisioned and	Geotechr	nical Engi	ineer. Als	o, boreh	ole informat	tion sh	ding of all pote ould be read in	ential conditions a conjunction wit	present a h the geot	and require technical i	es interpretative as report for which it	ssistance was	Scale: 1 : 84 Page: 2 of 2

R	ECORD	OF BOREHOLE	No.	BH/	MW	202														B.L.G. Consultation
Proj	ect Number:	BIGC-ENV-457B						Drilling	Locatio	on: <u>Se</u>	e Bore	ehole	e Locatio	on Plar	1 I			Logged b	y:	кк
Proj	ject Client:	Distrikt Capital						Drilling	Method	1: <u>1</u>	50 mm oring	Hol	low Ster	n Auge	ering +	+ Roc	:k	Compiled	by:	кк
Proj	ject Name:	Additional Geotechnical Inv	vestigation	n				Drilling	Machin			ount	ed Drill					Reviewed	l by:	SS
Proj	ect Location:	166 South Service Road Ea	st, Oakvill	le, Ont	ario			Date S	started:	22	2 May 2		Date C	Comple	ted: 2	2 Ma	y 3	Revision	No.:	<u>0, 22-7-5</u>
	LITHO	LOGY PROFILE	SC	DIL SA	MPLI	-				LD TE			★ Rinse p	B TES	\$		z			
Lithology Plot		DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Va △ Intact ▲ Remain * Undrain	ane* N t ⇔ ould ♦ ed Shear \$	DCPT ilcon Var Intact Remoul Strength (k	ld :Pa)	 △ parts p 100 ▲ Lower I W_p ■ Plastic 	6 8 apour F er million 200 30 Explosive W O	Reading (ppm) 00 400 Limit (LE W	0 EL) /_	INSTRUMENTATION INSTALLATION	COM	MEN.	rs
	ASPHALT PAV	Surface Elevation: 105.67 m EMENT: 70 mm asphalt over105 ar base	.47	ى 1	84	0 13		<u> </u>	20 O	40	<u>50 80</u>		0 ¹⁰	40 6	0 80	_				
		ILL. Lace Sallu, Lace glavel,	.91 0.8 SS	2	62	37	- - - - -	105 -		0			o ¹⁰		· · · · · · · · · · · · · · · · · · ·					
9	,		SS	3	50	72/20cn		104 -			72 0cm		o ⁹		· · · · · · · · · · · · · · · · · · ·					
9 / 1 / 9 /			SS	4	90	50/5cm	2	-		50	UCIN		o ⁸							
		102			100	50/5cm	- - - 	103 -		5cm 50 5cm										
	quality, occasic brown to grey,	ale, highly weathered to excellent nal limestone layers, reddish noist	0.1					102 —		5cm	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
							4	-												
			SS	6	100	50/3	5	101 -		50 3										
								100 -		- - - -	· · · · · · · · · · · · · · · · · · ·				· · ·					
							6	-		- - - - - - -										
								99 -												
								98 -		* * * *	• • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·					
							8								· · · · · · · · · · · · · · · · · · ·					
								97 -		* * *	• • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·					
							9	-		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					
							E 10	96 -												
								95 -		•	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
							E- 11	-		· · · · · · · · · · · · · · · · · · ·	· · · · · ·			• • • • • • •						
	R	OCK CORE BEGINS			400	50	12	94 -												
	- Fair Quality		RC	1	100	52		93 —		0	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
							E 13													
	- Fair Quality		RC	2	100	69	- 14	92 -			0				· · · · · · · · · · · · · · · · · · ·					
								91 —		•	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
	- Fair Quality		RC	3	100	69	15			· · · ·	0									
								90 -		•	· · · · · · · · · · · · · · · · · · ·		-							
12-5 Miss	5. Consulting Inc 500 Tomken Rd. issauga, ON L4V	= 10 10	eestanding on dwater dep							npletion o <u>18.66 m</u>			🖪 Ca	ve in de	epth rec	corded	on complet	ion of drilling:	<u>Ope</u>	<u>1 m</u> .
Cana T: 41		Borehole de from a qualif	tails as prese fied Geotechn d and the acc	nted, do nical Eng	not cons ineer. Als	titute a th so, boreh	orough ole infor	understar mation sh	iding of all	potential	condition	is pre: rith th	sent and re e geotechni	quires in cal repo	terpreta rt for wh	tive ass nich it w	sistance /as			cale: 1 : 84

R	ECORD OF BOREHOLE N	o.	BH/	MW	<u>202</u>									B.I.G. Concentration
Proj	ect Number: BIGC-ENV-457B					Dril	ling		See Boreho	ole Locati	on Plan			Logged by: KK
	LITHOLOGY PROFILE	SC	DIL SA	MPLI			\dashv		TESTING		B TESTIN pH Values		z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m) EL EVATION (m)		O SPT MTO Vane* ∆ Intact ▲ Remould	 Intact Remould near Strength (kPa) 	Lower	Vapour Rea per million (ppr 200 300 Explosive Lim W	0 12 ding n) 400 it (LEL) ₩ _L iquid 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, moist - Good Quality	RC	4	100	76	89 - 17			o					
	- Good Quality	RC	5	100	78	18 18 ₩ 87 - 19			O					
	- Good Quality	RC	6	100	80	20			Ģ					
	-Good Quality	RC	7	86	84	21 21 84 22			0					
	- Good Quality	RC	8	100	87	23			0					
	- Excellent Quality	RC	9	100	92	24 24 81 81 25			c	,				
	- Fair Quality	RC	10	98	69	26			0					
	- Excellent Quality	RC	11	100	95	27 27 78 28			(þ				
	- Excellent Quality	RC	12	100	91	29			O			· · · · · · · · · · · · · · · · · · ·		
	- Excellent Quality 74.43	RC	13	100	96	30 								
	End of Borehole 31.2 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 18.66 m bgs on May 31, 2022.													
	Borehole details from a qualified C cormisioned an	Geotechr	nical Engi	ineer. Als	o, boreh	ole informatio	on sho	ling of all pote uld be read in	ntial conditions p	resent and re the geotechr	equires interp	retative as	ssistance was	Scale: 1 : 84

L

R	ECORD OF BOREHOI	LE No.	BH	/MW	203											BLG. Gove	L ATHIG
Proj	ect Number: BIGC-ENV-457B						Drilling	g Locat	ion:	See Boreh	ole Loca	ation Pla	n		Logged	by: <u>KK</u>	
Proj	ect Client: Distrikt Capital						Drilling	g Metho	ī	Coring			ering + Ro	ock	Compile	ed by: <u>KK</u>	
	ect Name: Additional Geotechnic							g Mach	-	Fruck Mou						ed by: SS	
Proj	ect Location: <u>166 South Service Roa</u>	•					_ Date \$	Started	-	22 Apr 27			eted: 22 M	ay 2	Revisio	n No.: <u>0, 22-7-</u>	5
	LITHOLOGY PROFILE	S		AMPLI	-					nTesting	★ Rins	AB TES	IS	z			
Ŧ	DESCRIPTION	Ø	lber		SPT 'N' Value/RQD%		Ê	O SP	т	DCPT	∆ part	il Vapour ts per million 200	Reading	INSTRUMENTATION INSTALLATION	CON	MENTS	
Lithology Plot	DESCRIPTION	sample Type	Sample Number	Recovery (%)	v' Valu	DEPTH (m)	EVATION	MTO ∆ Inta ▲ Re	act ·	Nilcon Vane	▲ Low W _P	ver Explosiv	e Limit (LEL) WL				
Litholo	Geodetic Ground Surface Elevation: 105.55 n	Sampl	Sampl	Recov	SPT 'N	DEPT	ELEV		ined Shea	Strength (kPa 60 80	a) Plas 20		Liquid 60 80	INSTF INSTA			
*****	ASPHALT PAVEMENT: 60 mm asphalt ov 200 mm granular bases	^{er} 105.25 SS	1	13	11	Ē		0		· · ·	o ¹³	-		형 형			
	FILL: silty clay, trace sand, trace gravel, tra rootlets, grey, moist, stiff		-			Ē	105 -										
		104.03	2	79	8			0			······0 ¹² ·		·[· · · · ·] · · · · ·				
	CLAYEY SILT TILL: trace sand, trace grav occasional shale fragments, reddish brown	/el, 1.5	3	79	36		104 -		0		o ⁹		· · · · · · · · · · · · · · · · · · ·				
	hard BEDROCK: Shale, highly weathered to fair	103.26 2.3 SS	4	100	50/15cn	2			50	• • • • • • • • • • • • • • • • • • • •							
	quality, occasional limestone layers, reddis brown to grey, moist	h		100			103 -		15cm								
E		SS	5	38	50/13cn	— 3 —			50 13cm								
						Ē,	102 -		* * *	· · ·		-	· · · · · · · · · · · · · · · · · · ·				
						4			50				· · · · · · · · · · · · · · · · · · ·				
			6	- 38	50/8cm		101 -		50 8cm								
						5						· · · · · · · · · · · · · · · · · · ·	· [· · · · ·]· · · · · · · · · · · · ·				
							100 -		•	· · ·		-	· · ·				
		SS	7	100	50/8cm	6 E			50 8cm								
							99 -		• • •	· · ·		-	· · · · · · · · · · · · · · · · · · ·				
						7 											
		- 55	8	100	50/5cm	- 	98 -		50 5cm			-	· · · · · · · · · · · · · · · · · · ·				
						8							·····				
						Ē	97 -		•	· · ·	-	-	· · ·				
						- 9 -							······				
						Ē	96 -		•	• • • • • •		-	· · ·				
						E- 10 E							· · · · · · · · · · · · · · · · · · ·				
							95 -			· · ·		-					
						- 11 -											
							94 -				-	-	· · ·				
		RC	1	75	0	- 12 -							·····				
	ROCK CORE BEGINS - Very Poor Quality						93 -		•	· · ·		-	· · ·				
	- Fair Quality	RC	2	100	47	E 13			0				······				
						Ē	92 -		•	· · ·		-	· · ·				
			1			E 14											
	- Fair Quality	RC	3	98	55		91 -			0		-	· · ·				
Ē	, an Quanty					E 15 F											
						E	90 -						· · · · · · · · · · · · · · · · · · ·				
B.I.G	. Consulting Inc.	No freestanding		water -		F <u>16</u>	n hor		melotio	of drillin -		: Cava i= -	opth rocard		tion of drilling	0000 77	
12-5 Miss	500 Tomken Rd.	Groundwater de							mpletior <u>18.21</u>			Cave in d	epuirecorde	sa on comple	tion of drilling:	<u>Open m</u> .	
	6-214-4880 Boreh 6-551-2633 from a	ole details as pres	sented, do	o not cons gineer. Als	stitute a th so, boreh	norough ole infoi	understa	nding of a	all potenti	al conditions						Scale: 1 :	84
		isioned and the ad	compan	ying'Note:	s to Reco	rd of Bo	reholes'.				3-0.00					Page: 1 of	

	RECORD OF BOREHOLE No. BH/MW203 Project Number: BIGC-ENV-457B Drilling Location: See Borehole Location Plan Logged by: KK LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING Z														
	LITHOLOGY PROFILE	SO	IL SA	MPLI	NG			FIELD TESTING LAB TESTING							
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)		COMMENTS						
	BEDROCK: Shale, highly weathered to fair quality, occasional limestone layers, reddish prown to grey, moist Fair Quality	RC	4	100	55		89 -	0							
	Fair Quality	RC	5	92	47		88 -	o							
	Fair Quality 85.45	RC	6	84	50	19	86 -	o							
	Image: Note of the open upon completion of drilling. 20.1 where it was the reading not measured action of completion of drilling. 20.1 where it was the reading not measured action of the open upon completion of drilling. 20.1 where it was the reading not measured action of the open upon upon the open upon the open upon upon the open upon upon upon the open upon upon upon upon upon upon upon upo	as present	nted, do o	not const	itute a th	porcugh L		ding of all potential conditions present and requires interpretative assistance out be read in conjunction with the geotechnical report for which it was	Scale: 1 : 84						

Г

		OF BOREH BIGC-ENV-457B		0.	BH/	MW	<u>204</u>		Drillin	Location:	500 F	oreho		ation	Dian			Logge	d by:	KK	. G. NGJ. 1975
	ject Client:	Distrikt Capital								Method:						ing + R	ock		iled by:	KK	
	ject Name:	Additional Geotec	chnical Invest	tigatio	n					Machine:	Corin	g Moun				.			wed by:		
Pro	ject Location:	166 South Service	e Road East,	ario			Date	Started:	22 Ma	iy 9	_ Dat	te Cor	nplete	ed: <u>22 N</u>	lay 10	Revisi	on No.:	0, 22-7	7-5		
	LITH	OLOGY PROFIL	E	SC	DIL SA	MPLI	NG			FIELD	TESTI	NG	L	AB T	EST	ING					
Lithology Plot		DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* ∆ Intact ▲ Remould * Undrained Shu 20 40	tionTesti ● DC Nilcon ◇ Int ◆ Re	ing CPT Vane* act emould	 ★ Rin 2 So 4 pa 10 ▲ Lo W ➡ 	nse pH V 4 6 oil Vapo irts per m 0 200 ower Expl /p astic	/alues 8 our Re hillion (p 300 losive Li W O	10 12	I I I INSTRUMENTATION INSTALLATION	co	MMEN	TS	
	TOPSOIL: 100 FILL: clayey s		105 ₀ 16 , trace	SS	1	79	14		105 -	0		-	o ¹²	2		• • • •					
	gravel, trace is			SS	2	95	16		104 -	0			o ¹¹			· · · · · · ·					
	CLAYEY SILT grey, moist, ve	TILL: trace sand, tracery stiff to hard	103.74 ægravel, 1.5	SS	3	100	25			0	•		o ⁹			-					
111111				SS	4	67	39		103 -	0	· · · · · · · · · · · · · · · · · · ·		0 ⁸								
			101.91					- 3 	102 -	5	0										
	quality, occasi	hale, highly weathered onal limestone layers, damp to moist	to excellen8.4 reddish	SS	5	100	50/13cr		-	5 13cr	ð n					,					
				SS	6	- 38	50/8cm		101 -	5 8cr	0	•	-	-		* * * *					
								5	100 -							· · · · · · · · · · · · · · · · · · ·					
									00							•					
									99 -												
									98 -		*		-		•	*					
								8	97 -												
								9	96 -							· · · · · · · · · · · · · · · · · · ·					
								10								•	• •				
									95 -		•					* * * *					
								- 11 	94 -												
								E - 12	93 -		• • • •			· · · · · · · · · · · · · · · · · · ·		· · · · · ·					
	F - Good Quality	ROCK CORE BEGINS /		RC	1	93	76					0				•					
	- Fair Quality			RC	2	100	57	- 13	92 -		o										
	- highly weath	ered from 13.87 m to 1	4.17 m bgs					E 14	91 -												
	- Good Quality	1		RC	3	100	81	- 15	90 -			. O									
											* * * *	•	-			* * * * * * *					
12-5 Miss	5. Consulting In 500 Tomken Rd issauga, ON L4	l.	∑ No freest							le on completi th of: <u>18.5</u>		lling.		Cave	in dept	h record	ed on compl	etion of drillin	g: <u>Ope</u>	<u>n m</u> .	
Cana T: 41		-	Borehole details from a qualified (commisioned and	as prese Geotechr	nted, do nical Eng	not cons ineer. Als	titute a th so, boreh	norough ole infor	understa mation sl	nding of all poter	ntial cond	litions pro	esent an he geote	nd requir echnical	res inter report	pretative for which	assistance it was			Scale: 1	

RE	CORD OF BOREHOLE N	o.	BH/	MW	<u>204</u>						BLG. COMPACTIVES
Proj	Logged by: KK										
	LITHOLOGY PROFILE	SC	IL SA	MPLI				FIELD TESTIN			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCP ⁻ MTO Vane* Nilcon V △ Intact ◇ Intact ▲ Remould ● Remo * Undrained Shear Strength 20 40 60 8	2 4 6 8 Soil Vapour Re Δ parts per million (μ 100 200 300 Lower Explosive L W _P W ■ ●		COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist - 2 inch clay seam - Fair Quality	RC	4	100	72	- - - - - - - - - - - - - - - - - - -	89 -	0			
	- Good Quality - highly weathered	RC	5	100	78	18 18	87 —	C)		
	- Fair Quality	RC	6	98	56	19 19 10 10 10 10 10 10 10 10 10 10 10	86 -	O			
	- Fair Quality	RC	7	100	64	21	84 —	0			
	- Very Poor Quality - highly weathered with clay interbedded from 22.1 m to 23.3 m bgs	RC	8	100	14	22	83 -	0			
	- Fair Quality	RC	9	98	58	24	81 -	o			
	- Fair Quality	RC	10	79	45	25	80	o			
	- Excellent Quality	RC	11	100	93	27	78		0		
	- Good Quality	RC	12	100	83	28	77 -		0		
	- Good Quality 74,56	RC	13	100	84	30	75 —		O		
	End of Borehole 30.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 18.59 m bgs on May 31, 2022.										
	Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nted, do nical Engi companyi	not consi ineer. Als ng'Notes	titute a th o, boreho to Recor	norough u ole inform rd of Bore	nderstar nation sh eholes'.	ding of all potential condition	ons present and requires inte with the geotechnical report	rpretative assistance for which it was	e Scale: 1 : 84

Г

L

٦

RI	ECORD	OF BOREHOL	E No.	Ī	BH/	MW	<u>205</u>													10	B	LG.
Proj	ect Number:	BIGC-ENV-457B							Drilling	Location:	See	Boreho	le Loc	ation	Plan				Logge	ed by:	кк	
	iect Client:	Distrikt Capital								Method:	Cori	<u>mm Ho</u> ng			Auge	ring ·	+ Roc	:k		oiled by:	KK	
	ject Name:	Additional Geotechnical								Machine:		k Moun					2 Ma	. 5		wed by:		
PIO		166 South Service Road								Started:	22 M				mplet			<u>yə</u>	Revis	ion No.:	0, 22-	/-5
		OLOGY PROFILE		50	IL SA	MPLI	1			FIELD Penetra			★ Ri	LAB inse pH	TEST Values 6 8	10	_	NO				
ot		DESCRIPTION		φ	nber	(%	'N' Value/RQD%		E Z	O SPT	• □		S	oil Var	cour Remillion (p	eading	g o	INSTRUMENTATION INSTALLATION	СС	OMMEN	TS	
Lithology Plot			H	sample I ype	Sample Number	Recovery (%)	N' Vali	(ш) н.	EVATION	MTO Vane* △ Intact ▲ Remould	♦ Ir	n Vane* itact temould	🔺 Lo		plosive I W		EL)	ALLAT				
		d Surface Elevation: 105.00 m		Samp	Samp	Reco	SPT '	DEPTH	ELEV	* Undrained Sh 20 40	ear Strer 60	ngth (kPa) 8 ⁰	PI 2	astic 0 4	D 60	Liqui 80		INSTI INST,				
	TOPSOIL: 150 FILL: clayey si	0 mm1 ilt, trace to some sand, trace potlets, dark brown, moist to ve		s	1	87	18			0	•		o ¹¹									
	moist, very stif		Ē	_					104 —		•		• • • ¹	4								
		1	103.48	S	2	100	20	Ē	104 -	0			0.									
	CLAYEY SILT grey, moist, ve	TILL: trace sand, trace gravel	l, 1.5	s	3	100	41	Ē		0	-		o ¹⁰		-							
			_	_				2	103 —													
			101.95	s	4	100	28		-	0	•		0 ⁸									
	quality, occasi	hale, highly weathered to excel onal limestone layers, reddish		S	5	90	50/5cm		102 -	5 5ci	0 0 1											
	brown to grey,	damp to moist						E			•											
								- 4 E	101 -													
			5	s	6	56	50/3cm			5 3ci	0 0 n											
								5	100 -													
											•											
								6	99 -			· · · · · · · · · · · · · · · · · · ·										
								E			•											
								E 7	98 -													
											• • •	•										
								8	97 -						•••••							
								E 9	96 -													
								Ē	-		•											
								10	95 —													
									-		•											
								- 11	94 -													
											-											
								12	93 —													
		ROCK CORE BEGINS	-	RC	1	87	44	E E)											
	- Poor Quality		\vdash					13	92 —													
					0	400					•											
	- Poor Quality			SC	2	100	36	- 14	91 —	0												
Ē																						
											•											
	-Poor Quality		F	SC	3	100	46	- 15 -	90 —) J											
											:	•										
12-5	6. Consulting In 500 Tomken Rd issauga, ON L4\	. = 10								le on completi		rilling.		Cave	e in dep	oth rec	corded	on comple	tion of drillin	ng: <u>Op</u> e	e <u>n m</u> .	
Cana T: 41	ada 6-214-4880		roundwater							th of: <u>18.2</u>		ditions pr	esent 2	nd receiv	ires inte	erpreta	tive as	sistance				
F: 41	6-551-2633	from a gu	ualified Geol ioned and the	techni	ical Engi	neer. Als	o, boreh	ole infor	mation sh	ould be read in	conjunc	tion with th	he geote	echnica	l report	for wh	nich it w	/as			Scale: 1 age: 1	

R	CORD OF BOREHOLE N	o . <u> </u>	BH/	MW	<u>205</u>									B.I.G. GONELTING
Proj	ect Number: BIGC-ENV-457B						Drilling	g Location:	See Bo	rehole	Location	Plan		Logged by: KK
	LITHOLOGY PROFILE	SC	IL SA	MPLI				FIELD		G	LAB T Rinse pH V 2 4 6	ESTING	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	 Intact Remo ear Strength 	r	Soil Vapo parts per m 100 200 ▲ Lower Expl W _P	Dur Reading iillion (ppm) 300 400 losive Limit (LEL) W W _L O Liquid	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist - Fair Quality	RC	4	100	67	- - - - - - - - - - - - - - - - - - -	88 -		0					
	- Fair Quality	RC	5	100	57	- 18 - ₹	87 -		0					
	- Fair Quality	RC	6	100	64	19 20	86 – 85 –		O					
	- Good Quality	RC	7	100	88	21	84 —			0				
	Fair Quality	RC	8	100	61	22	83 -		O					
	- Good Quality	RC	9	100	86	24	81 -			0				
	- Fair Quality	RC	10	92	65	25	80		0					
	- Fair Quality	RC	11	100	68	27	78 -		0					
	-Good Quality	RC	12	100	86	28	77 -			0				
	- Good Quality 74.48	RC	13	100	93	30	75 -			0.				
	End of Borehole 30.5 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 18.27 m bgs on May 31, 2022.													
	Borehole details from a qualified (commisioned and	Geotechn	ical Engi	ineer. Als	o, boreho	ole inform	nation sl	hould be read in	ntial condition	ons pres with the	ent and requir geotechnical	es interpretative a report for which it	ssistance was	Scale: 1 : 84 Page: 2 of 2

	OF BOREHOLE N	l o.	BH/	MW	206												B.LG. Goneumi he
Project Number Project Client:	: BIGC-ENV-457B Distrikt Capital							Location: Method:		Borehol			n ering + Ro	ock.	Logged Compile		
Project Name:	Additional Geotechnical Inves	tigatio	n					Machine:	Coi	ring ck Mount		m Auge	ening + Ko	JCK		ed by: <u>K</u>	
	166 South Service Road East,			tario				Started:		May 6		Comple	ted: 22 M	ay 6		n No.: 0 ,	
LIT	HOLOGY PROFILE	sc	DIL SA	AMPLI	NG			FIELD	TES	TING		B TES	TING				
thology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTe ● Nilc ◆ ear Str	esting DCPT con Vane* Intact Remould ength (kPa)	★ Rinse 2 4 Soil \ △ parts p 100	pH Values 6 8 /apour F per million 200 3(Explosive W O	;	INSTRUMENTATION INSTALLATION	CON	IMENTS	5
	100 mm 104,567 y silt, trace to some sand, trace e rootlets, dark brown, moist, very stiff		1	75	18			0			o ¹²						
1/17 1	103.59 LT TILL: trace sand, trace gravel, 1.1		2	87	13		104 -	0	• • • • • •	• • • • • •	o ¹¹						
grey, moist,	very stiff to hard	SS	3	100	36	2	103 -	0		•	o ¹⁰		· · · · · · · · · · · · · · · · · · ·				
		SS	4	92	34		102 -	0		-	o ¹¹		· · · · · · · · · · · · · · · · · · ·				
quality, occa	101.61 Shale, highly weathered to excellen8.1 asional limestone layers, reddish	SS	5	100	89/8cm	- 3 	-			89 8cm							
	ey, damp to moist					4	101 -										
		SS	6	100	50/10cr	E	100 -	5 10ci	i0 0 m	- - - - -							
						5	99 -			· · · · · · · · · · · · · · · · · · ·							
						6			• • • • • •	• • • • • •							
						- 7	98 -										
							97 -		•	-							
						8			•••••	· · · · ·							
						9	96 -										
						10	95 -			• • • • •							
							94 -		•	-							
						E 11	-		• • • • •	• • • • • • • • •							
						12	93 -		•••••								
- Very Poor	ROCK CORE BEGINS Quality	RC	1	59	18		92 -	Q	•	-			. 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
				400		13	91 -			· · · · · · · · · · · · · · · · · · ·							
- Poor Qual	ty	RC	2	100	32	14	51	0	• • • • •								
						- 15	90 -										
-Poor Qualit	у	RC	3	100	34		89 -	0	• • • • •	-							
B.I.G. Consulting 12-5500 Tomken I Mississauga, ON I	Rd. = No liees							le on completi		drilling.	E Ca	ave in de	pth recorde	ed on comple	tion of drilling:	<u>Open m</u>	<u>1</u> .
Canada T: 416-214-4880 F: 416-551-2633	.4W 2Z4 Borehole details from a qualified commissioned au	as prese Geotechr	ented, do nical Eng	not cons ineer. Als	titute a th o, boreh	orough ole infor	understa mation sl	nding of all pote	<u>'8 m</u> . ntial co conjur	onditions pre	esent and re	quires in ical repo	terpretative a rt for which it	ssistance was			lle: 1 : 84

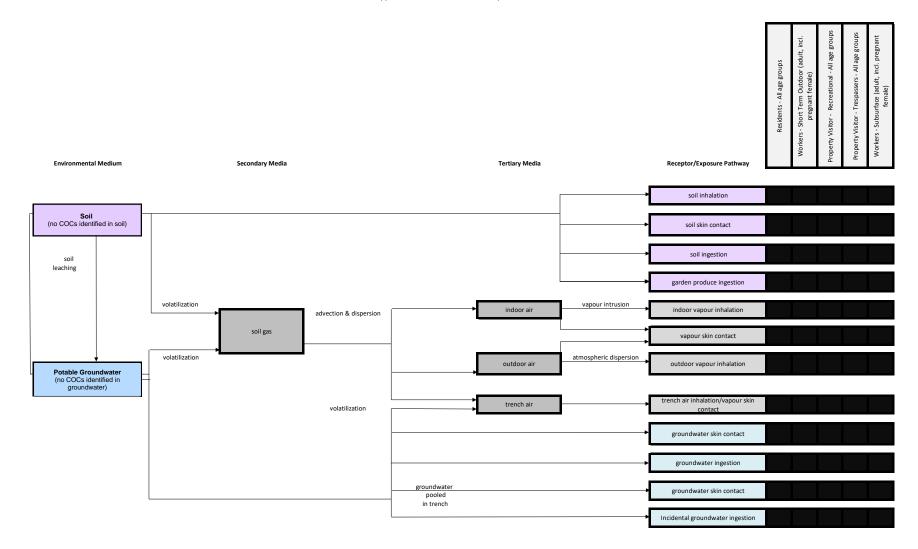
RE	CORD OF BOREHOLE N	o.	BH/	MW	<u>206</u>						B.I.G. Consultwork
Proj	ect Number: BIGC-ENV-457B						Drilling	Location: See Borehold			Logged by: KK
	LITHOLOGY PROFILE	SC	DIL SA	MPLI				FIELD TESTING	LAB TESTING ★ Rinse pH Values 2 4 6 8 10 12	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Vane* △ Intact ◆ Intact A Remould ◆ Remould * Undrained Shear Strength (kPa) 20 40 60 80	2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W _P W W _L Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional limestone layers, reddish brown to grey, damp to moist - Fair Quality	RC	4	100	51	17	88 —	0			
	-Poor Quality	RC	5	100	32	18	87 - 86 -	0			
	- Fair Quality	RC	6	100	71	20	85 -	0			
	-Fair Quality	RC	7	100	58	21	84 – 83 –	o			
	Good Quality	RC	8	100	88	23	82 —	o			
	- Good Quality	RC	9	100	84	24	81	o			
	- Excellent Quality	RC	10	100	93	26	79	o.			
	- Excellent Quality	RC	11	100	92	27	78	0			
	-Good Quality	RC	12	100	89	29	76 -	0			
	- Excellent Quality 73.91 End of Borehole 30.8	RC	13	100	100	30	74 -		>		
	Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading not measured due to core water upon completion of drilling. 3. Groundwater level reading at 17.78 m bgs on May 31, 2022.										
		Geotechr	nical Engi	neer. Als	o, boreho	ole inforn	nation sh	nding of all potential conditions pre lould be read in conjunction with th			Scale: 1 : 84 Page: 2 of 2

Page: 2 of 2

R	ECORD	OF BOREHOLE N	0.	<u>BH/</u>	MW	101							11	B.I.G. Gonerative
Proj	ject Number:	BIGC-ENV-457B						_ Drilling	g Location:	See Boreho	ole Location Plan		_ Logged by:	RC
Proj	ject Client:	166 South Service Inc.						_ Drilling	g Method:	100 mm S	olid Stem Augerin	g	_ Compiled by:	RC
Proj	ject Name:	Phase Two Environmental Site	Asses	ssmen	t			_ Drilling	g Machine:	Track Mour	nted Drill		_ Reviewed by:	RM
Proj	ject Location:	166 South Service Road East,	Oakvil	le, Ont	tario			_ Date \$	Started:	27 Apr 22	Date Complete	d: 27 Apr 22	Revision No.:	1, 2/8/22
	LITH	OLOGY PROFILE	SC	DIL SA	MPL	ING			FIELD	TESTING	LAB TEST			
Lithology Plot		DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane △ Intact ▲ Remould * Undrained S	 Intact Remould hear Strength (kPa) 	Lower Explosive Li W _P W ■ O Plastic		COMMEN	TS
	CONCRETE: granular base	d Surface Elevation: 106.04 m 150 mm concrete over 200 mm 105.69 d some gravel, brown, moist, 0.4	SS	ن ة 1	75	13			20 4 O	0 60 80	0.7			
	compact		SS	2	70	8	+ - - - - 1	- - 105 —	0		Ф ¹			
	- loose							-						
	- loose	400.00	SS	3	33	4	- - 2 -	104 -	0		▲ ^{0.9}			
***		reddish brown, very moist, hard 2.5 hale, highly weathered, grey,	SS	4	100	60		-		0	▲ 1.4 ▲ 0.6 ▲			
			SS	5	100	92/41cr		103 -		92 41cm	0.6			
							- - - 4	102 -						
			SS	6	100	50/13cr			13	50 cm	4 0.2			
							- 5	101 -						
		00.04						100						
	End of Boreho	99.94 ole 6.1			1	1	Ē	100 -						
	Notes: 1. Borehole op drilling.	ben and dry upon completion of												
12-5	5. Consulting In 500 Tomken Rd issauga, ON L4\ ada		anding	groundv	water m	easured	in ope	n boreho	le on comple	tion of drilling.	Cave in dept	h recorded on completic	on of drilling: <u>Ope</u>	e <u>n m</u> .
T: 41	16-214-4880 16-551-2633	Borehole details from a qualified (commisioned and	Geotechr	nical Eng	ineer. Als	so, boreh	ole info	rmation sl	nding of all pot hould be read i	ential conditions p conjunction with	present and requires inter the geotechnical report f	pretative assistance or which it was		Scale: 1 : 53

R	ECORD	OF BOREHOLE N	0.	BH/	MW	103														B.I.G. GONGLETING
Proj	ect Number:	BIGC-ENV-457B						Drilling	g Locati	ion:	See B	oreho	le Loc	ation P	lan			Logged b	oy:	RC
Proj	ect Client:	166 South Service Inc.						Drilling	g Metho	od:	100 m	ım So	olid St	em Aug	ering			Compiled	d by:	RC
Proj	ect Name:	Phase Two Environmental Site	Asses	ssmen	t			Drilling	g Machi	ne:	Track	Moun	ted D	rill				Reviewee	d by:	RM
Proj	ect Location:	166 South Service Road East,	Oakvil	le, Ont	ario			Date	Started:		28 Apı	22	_ Da	te Com	pleted:	<u>28 A</u>	pr 22	Revision	No.:	1, 2/8/22
	LITH		SC	DIL SA	MPLI	-			FIE	ELD T	ESTI	NG		AB TE inse pH Va		G	_			
Lithology Plot		DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SP ⁻ MTO \ ∆ Inta ▲ Rer * Undrai	T /ane* ct mould ined Shea	ar Strengt	PT Vane* ct nould	2 ▲ pa 10 ▲ Lo V ₽	4 6 oil Vapor arts per mil 0 200 ower Explo V _P V astic	8 10 ur Read lion (ppm) 300 sive Limit V) 400	INSTRUMENTATION INSTALLATION	СОМ	MEN	rs
ן יוייייין געייייייייייייייייייייייייייייייי	CONCRETE: 2 granular bases	105.68	SS	1	70	13	-	 	2 <u>0</u>	40	60	ου 	40.8	0 40	60		~~~~ 같이 같이 신문 신문			
	FILL: sand an compact	d some gravel, brown, moist, 0.4						-		* * * * * * *	- - - - - - - - -	•			-	•				
			SS	2	33	15		105 -	0	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	±1:2 ·			· · · · · · · · · · · · · · · · · · ·				
		103.91	SS	3	46	6	- 2	104 -	0	· · · ·			1			· · · · · · · · · · · · · · · · · · ·				
2	Vreddish brown BEDROCK: SI	hale, highly weathered, reddish											0.7		•	•				
	brown to grey,	moist to very moist, hard	SS	4	100	50		- - 103 -)		0.7			· · · ·				
			SS	5	91	78/56cn		-		• • • • • • • • •	7 56cr	B O n	0.6							
							- - - 4 -	102 -		* * * * *					- - - - - -	· · · ·				
			SS	6	100	50/28cn		-		50			0.5			• • • • •				
							- - 5 -	101 -		28cm										
								-		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				•				
		99.86	SS	7	100	50/8cm	6	100 -		50	5		0.5		*	· · · · · ·				
	drilling.	en and dry upon completion of er level reading at 2.44 m bgs upon								8cm	-									
12-5 Miss Cana T: 41	5. Consulting In 500 Tomken Rd Issauga, ON L4 ada 6-214-4880 6-551-2633		as prese Geotechr	nted, do	not cons	titute a th	norough ole infor	mation sl	nding of a	Il potent read in co	ial condi onjunctic	tions pre	esent a	nd require	s interpre	etative a	ed on complet	ion of drilling:	<u>Oper</u> S	<u>n m</u> . cale: 1 : 53

		OF BOREHOLE N BIGC-ENV-457B	0.	BH1	02			Drilling	Location:	See Boreho	ole Location Plan		Logged by:	BLG. Griessand he
Pro	ject Client:	166 South Service Inc.						Drilling	Method:	100 mm S	olid Stem Augering		Compiled by:	RC
Pro	ject Name:	Phase Two Environmental Site	Asses	smen	t			Drilling	Machine:	Track Mou	nted Drill		Reviewed by:	RM
Pro	ject Location:	166 South Service Road East,	Oakvil	le, Ont	ario			Date S	Started:	27 Apr 22	Date Completed: 27 Ap	r 22	Revision No.:	1, 2/8/22
	LITH	OLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	Geodetic Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetr O SPT MTO Vane ∆ Intact ▲ Remould	ationTesting ● DCPT ¹ Nilcon Vane ¹ ◇ Intact ◆ Remould hear Strength (kPa	▲ Lower Explosive Limit (LEL) W _P W W _L ■ ● ●	INSTRUMENTATION INSTALLATION	COMMEN	ITS
=_: -# =.: ₩	granular base	170 mm concrete over 200 mm 105.67 ace gravel, brown, moist, compact0.4	SS	1	84	10	-	-	0		▲0.2			
			SS	2	62	5	- - - - - -	105 —	0		ф ^{0.6}			
***	End of Boreh	104.67 ole 1.4					-	-						
	drilling.													
12-5 Miss Can T: 4	3. Consulting In 5500 Tomken Rd sissauga, ON L4\ ada 16-214-4880 16-551-2633	₩ 2Z4								tion of drilling.	Cave in depth recorded			<u>en m</u> . Scale: 1 : 53

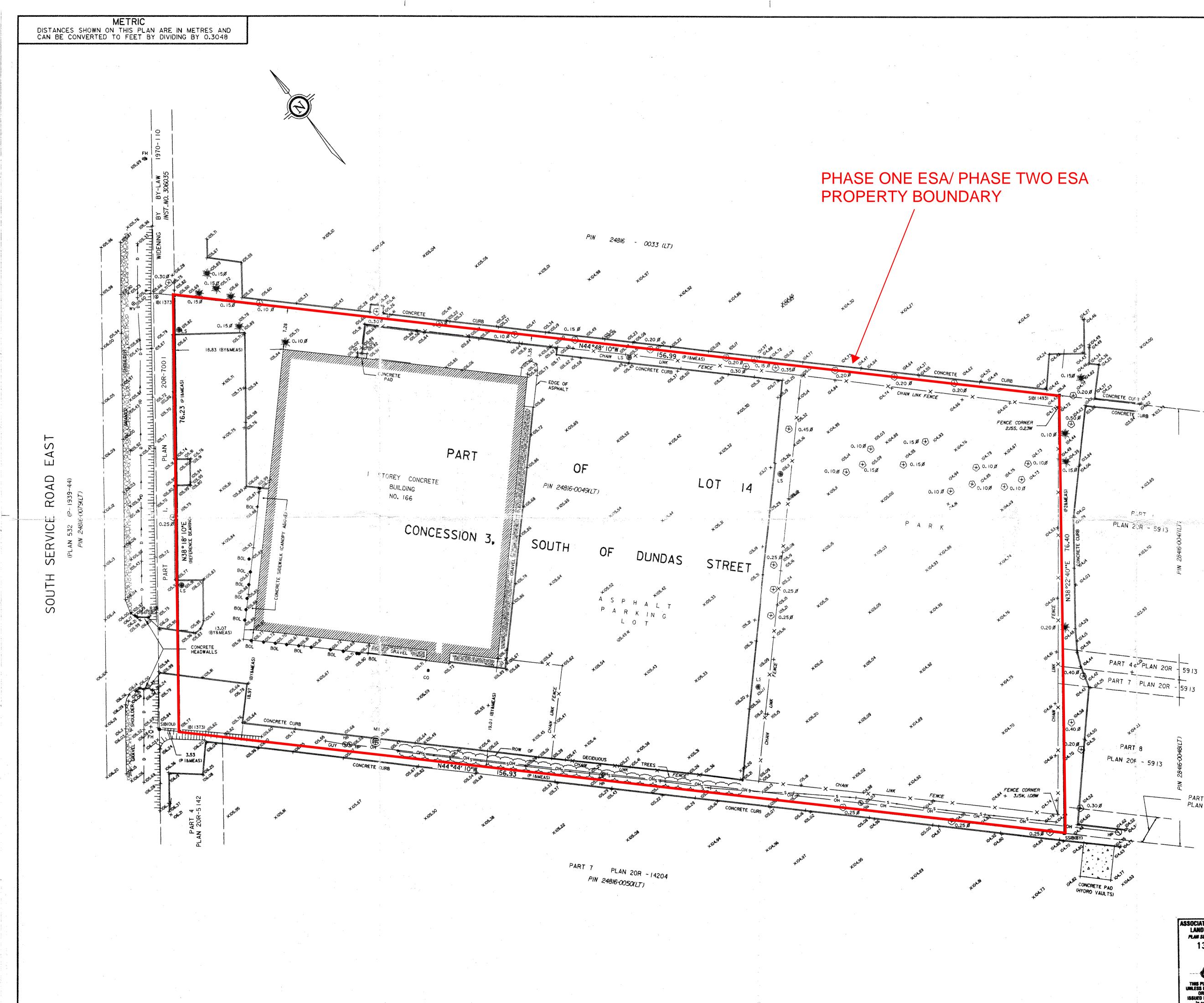

	ECORD OF BOREHOLE N ect Number: BIGC-ENV-457B	No.	<u>BH</u>	104			Drilling	g Location:	See Boreho	le Location Plan	Logge	ed by: RC
Proj	ect Client: 166 South Service Inc.						Drilling	g Method:	100 mm So	olid Stem Augering	Comp	iled by: <u>RC</u>
	ect Name: Phase Two Environmental Si							g Machine:	Track Moun			wed by: RM
Proj	ect Location: 166 South Service Road East	_					Date S	Started:	28 Apr 22	Date Completed: 28 A	or 22 Revis	ion No.: <u>1, 2/8/22</u>
	LITHOLOGY PROFILE	so		AMPLI	1				TESTING	LAB TESTING ★ Rinse pH Values	z	
Lithology Plot	DESCRIPTION Geodetic Ground Surface Elevation: 105.71 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould	tionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould ear Strength (kPa) 60 80	2 4' 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W W W Wp- W W Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	DMMENTS
	ASHPAHLT PAVEMENT: 130 mm asphalt over 200 mm granular base 105.3 FILL: sand and gravel, asphalt inclusions, grtg502	8 55	1	54	7		-	0		4 ¹ 4 0.4		
	Image: Model Image: Model<						105 -					
		SS	2	41	6	- 1 - -	-	0		ф ^{0.8}		
	- stiff 103.9 BEDROCK: Shale, highly weathered, grey, 1. moist to very moist, stiff		3	100	14	- - - - - - - 2	104 -	0		↓1.2 ↓0.5		
	- hard	SS	4	100	50/28cn		103 -	5 28cr	0 0 n	▲0.8		
	102.8End of Borehole2.	1 9				-						
	Notes: 1. Borehole open and dry upon completion of drilling.											
12-5	issauga, ON L4W 2Z4	standing	ground	water me	easured	in oper	n boreho	ble on completi	on of drilling.	Cave in depth recorde	d on completion of drillir	ıg: <u>Open m</u> .
T: 41	6-214-4880 Borehole detail	d Geotech	nical Eng	jineer. Als	o, boreh	ole infor	mation sl	nding of all poter hould be read in	ntial conditions pr conjunction with t	resent and requires interpretative a the geotechnical report for which it	ssistance was	Scale: 1 : 53 Page: 1 of 1

	ECORD OF BOREH	IOLE No.	<u>BH</u>	<u>105</u>			Drilling	Location:	See Borebol	e Location Plan	Logged	by: KK
	oject Client: <u>166 South Service</u>	e Inc.						Method:		lid Stem Augers	Compil	
Pro	oject Name: Phase Two Enviro	onmental Site Ass	essmer	nt			Drilling	Machine:	Track Mount	ted Drill	Review	ved by: RM
Pro	oject Location: <u>166 South Service</u>	e Road East, Oak	ille, On	tario			Date S	started:	<u>11 May 22</u>	Date Completed: 11 May	22 Revisio	on No.: <u>1, 2/8/22</u>
	LITHOLOGY PROFILI	E S		AMPLI	i				TESTING	LAB TESTING	z	
Lithology Plot	DESCRIPTION	ed/L eldwes	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould	tionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould ear Strength (kPa) 60 80	2 4 6 8 10 12 Soil Vapour Reading parts per millon (ppm) 100 200 300 400 A Lower Explosive Limit (LEL) Wp W W Plastic Liquid 20 40 60 80		MMENTS
	ASHPAHLT PAVEMENT: 80 mm as; 80 mm granular base FILL: silty sand, trace gravel, dark br compact FILL: clayey silt, trace organics, gree	0.2 SS	1	92	19	-	105 — 	0				
	moist, compact	ss	2	59	17	- - - 1 -	- - - - - - -	0				
	CLAYEY SILT TILL: trace sand, trac grey, moist, hard	103.87 e gravel, 1.4 SS	3	84	31		-	0				
4ť.	End of Borehole	103.11 2.1				- 2						
	Notes: 1. Borehole open and dry upon comp drilling.	bletion of										
12-{ Miss Can T: 4	G. Consulting Inc. 5500 Tomken Rd. sissauga, ON L4W 2Z4 jada 16-214-4880 16-551-2633		sented, do	o not consi gineer. Als	titute a th	orough u	understar mation sh	iding of all poter	ntial conditions pre	Cave in depth recorded o	stance	: <u>Open m</u> . Scale: 1 : 53 Page: 1 of 1

Appendix D – Conceptual Site Models

Appendix D.1 - Human Health Conceptual On-Site Model

	Receptor/Exposure Pathway is
	incomplete
1	Receptor/Exposure Pathway is
•	complete


Appendix D.2 - Ecological Conceptual On-Site Model

Primary Source		Secondary Source		Receptor/Exposure Pathway	vegetation	soil invertebrates	terrestrial birds and mammals	aquatic vegetation	aquatic animals
				root uptake of soil					
	wind erosion			► soil inhalation					
Soil (no COCs identified in soil)				► soil dermal contact					
				 soil ingestion 					
			atmospheric dispersion	stem and foliar uptake					
leaching	volatilization •	ambient air	atmospheric dispersion	 vapour inhalation 					
	biotransformation of soil & groundwater	plant and animal tissue		 ingestion of plant & animal tissue 					
		Γ		► root uptake of groundwater					
Potable Groundwater (no COCs identified in groundwater)				 groundwater dermal (direct) contact 					
				► groundwater ingestion					
					-				

	Receptor/Exposure Pathway is
	incomplete
✓	Receptor/Exposure Pathway is complete

Appendix E - Survey Plan

TOPOGRAPHICAL PLAN OF SURVEY OF PART OF LOT 14 CONCESSION 3 SOUTH OF DUNDAS STREET FORMERLY TOWNSHIP OF TRAFALGAR, COUNTY OF HALTON TOWN OF OAKVILLE REGIONAL MUNICIPALITY OF HALTON

SCALE I : 300 500 0 5 10 15

BENNETT YOUNG LIMITED PROFESSIONAL LAND SURVEYORS

NOTES: THIS PLAN WAS PREPARED FOR THE SOLE USE OF COMARK INC.

BEARINGS ARE ASTRONOMIC AND ARE REFERRED TO THE SOUTHEASTERLY LIMIT OF PART I AS SHOWN ON PLAN 20R-700 I, HAVING A BEARING OF N38° 18' 10"E.

LEGEND

(0U) BY (1493) (1373) P		ORIGIN UKNOWN BENNETT YOUNG LIMITED J.F. YOUNG, O.L.S. BENNETT & NORGROVE LIMITED PLAN 202-7001
FH	, one and the second second second second second second second second second second second second second second	FIRE HYDRANT
MH		MANHOLE
ĊŎ		CLEAN OUT
LS	Withink Andrew when it is a subscript and	LIGHT STANDARD
HP		HYDRO POLE
*	weiner unstate statute warme details, websit	CONIFEROUS TREE
\odot		DECIDUOUS TREE
ø		DIAMETER
-5-		SWALE
OH		OVERHEAD WIRES
-D-		DITCH
BOL		BOLLARD

BENCH MARK

PART 9

ELEVATIONS ARE GEODETIC AND REFERRED TO TOWN OF OAKVILLE BENCHMARK No. 110 (0.B.M.) ELEVATION 107.172

SURVEYOR'S CERTIFICATE PLAN 20R- 5913 ICERTIFY THAT:

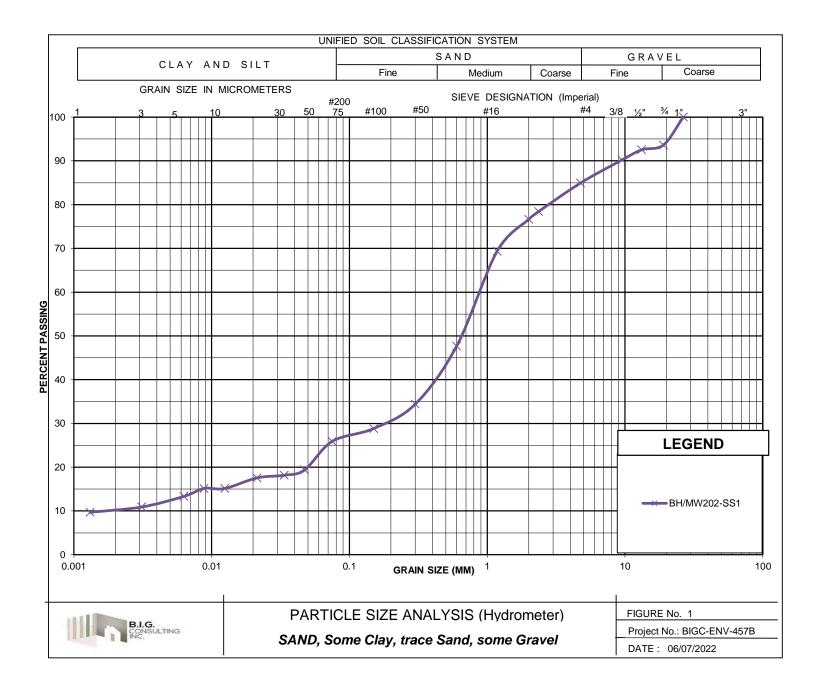
CHECKED BY: DRAWN BY:

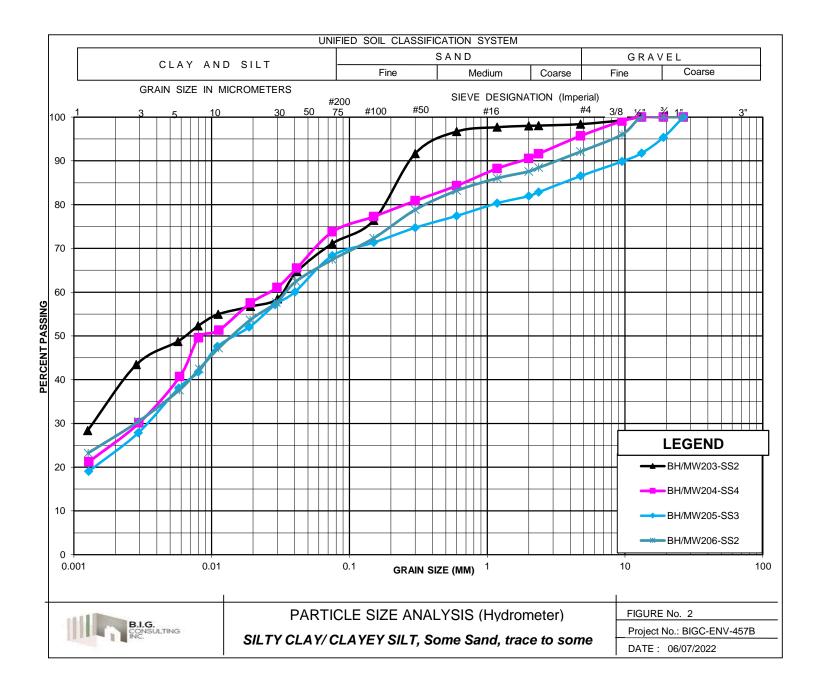
W.

- I. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT, THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM.
- 2. THE SURVEY WAS COMPLETED ON THE 13th DAY OF AUGUST 2002.

AUGUST 23, 2002 151 DATE: RODNEY H. GEYER ONTARIO LAND SURVEYOR

O COPYRIGHT, 200 | BENNETT YOUNG LIMITED ASSOCIATION OF ONTARIO LAND SURVEYORS The reproduction, diteration or use of this REPORT, in whole or in part, without the express permission of BENNETT YOUNG LIMITED, IS STRICTLY PROHIBITE PLAN SUBMISSION FORM 1363851 BENNETT YOUNG LIMITED PROFESSIONAL LAND SURVEYORS Æ 1040 MARTIN GROVE ROAD, UNIT 25, TORONT MENTARIO, MOW 4W4 TEL (416) 247-8691 / FAX (416) 247-6305 THIS PLAN IS NOT VALIB UNLESS IT IS AN EMBOSSED ORIGINAL COPY ISSUED BY THE SURVEYOR In accordance with Regulation 1626, Section 29(3)


RLI


REV. DATE

2002/08/23 2002 16 IP I

Appendix F – Grain Size Analysis

Appendix G - Laboratory Certificates of Analysis

CLIENT NAME: B.I.G. CONSULTING INC. **12-5500 TOMKEN ROAD** MISSISSAUGA, ON L4W 2Z4 416-214-4880 **ATTENTION TO: Rebecca Morrison PROJECT: BIGC-ENV-457A** AGAT WORK ORDER: 21T742871 **TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist** DATE REPORTED: May 13, 2021 PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

tes			

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	a
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 9

AGAT WORK ORDER: 21T742871 PROJECT: BIGC-ENV-457A 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

DATE REPORTED: 2021-05-13

SAMPLED BY:AB

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2021-05-05

	S	AMPLE DESCR	IPTION:	MW1	MW2	MW6	MW10
		SAMPLE	E TYPE:	Water	Water	Water	Water
		DATE SAI	MPLED:	2021-05-05 13:00	2021-05-05 13:15	2021-05-05 13:30	2021-05-05 13:45
Parameter	Unit	G / S	RDL	2430912	2430930	2430931	2430932
F1 (C6 - C10)	μg/L	750	25	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA
Sediment				No	No	No	No
Surrogate	Unit	Acceptable I	Limits				
Toluene-d8	% Recovery	50-140		92.8	98.5	94.2	98.5
Terphenyl	%	60-140		74	111	120	100

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T2 PGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2430912-2430932 The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukoloj

Certified By:

AGAT WORK ORDER: 21T742871 PROJECT: BIGC-ENV-457A

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

				ontog		1000 (1141	~		
DATE RECEIVED: 2021-05-05								DAT	E REPORTED: 2021-05-13
		SAMPLE DESCI SAMPL DATE SA	E TYPE:	MW1 Water 2021-05-05	MW2 Water 2021-05-05	MW6 Water 2021-05-05		MW10 Water 2021-05-05	
Parameter	Unit	G/S	RDL	13:00 2430912	13:15 2430930	13:30 2430931	RDL	13:45 2430932	
Dichlorodifluoromethane	µg/L	590	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Vinyl Chloride	µg/L	1.7	0.17	<0.17	<0.17	<0.17	0.50	<0.50	
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Trichlorofluoromethane	µg/L	150	0.40	<0.40	<0.40	<0.40	1.60	<1.60	
Acetone	µg/L	2700	1.0	<1.0	<1.0	<1.0	4.0	<4.0	
1,1-Dichloroethylene	µg/L	14	0.30	<0.30	<0.30	<0.30	1.20	<1.20	
Methylene Chloride	µg/L	50	0.30	<0.30	<0.30	<0.30	1.20	<1.20	
trans- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
1,1-Dichloroethane	μg/L	5	0.30	<0.30	<0.30	<0.30	1.20	<1.20	
Methyl Ethyl Ketone	µg/L	1800	1.0	<1.0	<1.0	<1.0	4.0	<4.0	
cis- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Chloroform	µg/L	22	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
1,2-Dichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
1,1,1-Trichloroethane	µg/L	200	0.30	<0.30	<0.30	<0.30	1.20	<1.20	
Carbon Tetrachloride	µg/L	5.0	0.20	<0.20	<0.20	<0.20	0.79	<0.79	
Benzene	μg/L	5.0	0.20	0.62	<0.20	<0.20	0.80	<0.80	
1,2-Dichloropropane	μg/L	5	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Trichloroethylene	μg/L	5	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Bromodichloromethane	μg/L	16	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	<1.0	<1.0	4.0	<4.0	
1,1,2-Trichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Toluene	μg/L	24	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Dibromochloromethane	µg/L	25	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	0.25	<0.25	
Tetrachloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
Chlorobenzene	µg/L	30	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
Ethylbenzene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	0.40	<0.40	

Certified By:

NPopukoloj

AGAT WORK ORDER: 21T742871 **PROJECT: BIGC-ENV-457A**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: 166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2021-05-05				
		SAMPLE DES	CRIPTION:	MW1
		SAM	PLE TYPE:	Water
		DATES	SAMPLED:	2021-05-05 13:00
Parameter	Unit	G / S	RDL	2430912

Unit		PLE TYPE: SAMPLED:	Water 2021-05-05	Water	Water		Water	
Unit	DATES	SAMPLED:	2021-05-05					
Unit			13:00	2021-05-05 13:15	2021-05-05 13:30		2021-05-05 13:45	
onit	G/S	RDL	2430912	2430930	2430931	RDL	2430932	
µg/L		0.20	<0.20	<0.20	<0.20	0.80	<0.80	
µg/L	25	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	5.4	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	1	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L		0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	59	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	1	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	3	0.10	<0.10	<0.10	<0.10	0.40	<0.40	
µg/L	0.5	0.30	<0.30	<0.30	<0.30	1.20	<1.20	
µg/L	300	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
µg/L	520	0.20	<0.20	<0.20	<0.20	0.80	<0.80	
Unit	Acceptab	Acceptable Limits						
% Recovery	50-1	140	100	95	95	4	95	
% Recovery	50-1	140	100	99	97	4	98	
	μg/L μg/L	μg/L μg/L 25 μg/L 5.4 μg/L 1 μg/L 59 μg/L 59 μg/L 1 μg/L 30 μg/L 300 μg/L 520 Unit Acceptab % Recovery 50-4	μg/L 0.20 μg/L 25 0.10 μg/L 5.4 0.10 μg/L 1 0.10 μg/L 59 0.10 μg/L 59 0.10 μg/L 1 0.10 μg/L 3.010 1 μg/L 3.0.30 0.20 μg/L 520 0.20 μg/L 520 0.20 μg/L 520 0.20 μg/L 520 0.20 μg/L 50-140	μg/L 0.20 <0.20 μg/L 25 0.10 <0.10	μg/L 0.20 <0.20 <0.20 μg/L 25 0.10 <0.10	μg/L 0.20 <0.20 <0.20 <0.20 μg/L 25 0.10 <0.10	μg/L 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.80 μg/L 25 0.10 <0.10	μg/L 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.80 <0.80 μg/L 25 0.10 <0.10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T2 PGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2430912-2430931 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

2430932 Dilution factor=4

The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor used.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2021-05-13

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

SAMPLING SITE:166 South Service Road East

AGAT WORK ORDER: 21T742871 ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: May 13, 2021			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
		Sample				Method Blank	Measured		ptable nits			ptable nits			ptable nits
PARAMETER	Batch	Id	Dup #1	Dup #2	RPD	Diam	Value	Lower	Upper	Recovery	Lower		Recovery	Lower	
O. Reg. 153(511) - PHCs F1 - F4	(-BTEX) (Wa	ter)													
F1 (C6 - C10)	2429567		<25	<25	NA	< 25	81%	60%	140%	81%	60%	140%	69%	60%	140%
F2 (C10 to C16)	2440398		< 100	< 100	NA	< 100	111%	60%	140%	81%	60%	140%	70%	60%	140%
F3 (C16 to C34)	2440398		< 100	< 100	NA	< 100	101%	60%	140%	100%	60%	140%	71%	60%	140%
F4 (C34 to C50)	2440398		< 100	< 100	NA	< 100	105%	60%	140%	93%	60%	140%	100%	60%	140%
O. Reg. 153(511) - VOCs (Water)														
Dichlorodifluoromethane	, 2442663		<0.20	<0.20	NA	< 0.20	79%	50%	140%	99%	50%	140%	82%	50%	140%
Vinyl Chloride	2442663		<0.17	<0.17	NA	< 0.17	113%	50%	140%	103%	50%	140%	92%	50%	140%
Bromomethane	2442663		<0.20	<0.20	NA	< 0.20	102%	50%	140%	100%	50%	140%	97%	50%	140%
Trichlorofluoromethane	2442663		<0.40	< 0.40	NA	< 0.40	98%	50%	140%	109%	50%	140%	117%	50%	140%
Acetone	2442663		<1.0	<1.0	NA	< 1.0	100%	50%	140%	95%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	2442663		<0.30	<0.30	NA	< 0.30	95%	50%	140%	100%	60%	130%	106%	50%	140%
Methylene Chloride	2442663		< 0.30	< 0.30	NA	< 0.30	105%	50%	140%	95%	60%	130%	100%	50%	140%
trans- 1,2-Dichloroethylene	2442663		<0.20	<0.20	NA	< 0.20	90%	50%	140%	92%	60%	130%	107%	50%	140%
Methyl tert-butyl ether	2442663		<0.20	<0.20	NA	< 0.20	101%	50%	140%	102%	60%	130%	91%	50%	140%
1,1-Dichloroethane	2442663		<0.30	< 0.30	NA	< 0.30	101%	50%	140%	101%		130%	110%	50%	140%
Methyl Ethyl Ketone	2442663		<1.0	<1.0	NA	< 1.0	116%	50%	140%	99%	50%	140%	93%	50%	140%
cis- 1,2-Dichloroethylene	2442663		<0.20	<0.20	NA	< 0.20	96%	50%	140%	87%	60%	130%	91%	50%	140%
Chloroform	2442663		<0.20	<0.20	NA	< 0.20	97%	50%	140%	96%	60%	130%	104%	50%	140%
1,2-Dichloroethane	2442663		<0.20	<0.20	NA	< 0.20	101%	50%	140%	101%	60%	130%	80%	50%	140%
1,1,1-Trichloroethane	2442663		<0.20	< 0.20	NA	< 0.20	106%	50%	140%	109%	60%	130%	108%	50%	140%
Carbon Tetrachloride	2442663		<0.20	<0.20	NA	< 0.20	112%	50%	140%	111%	60%	130%	94%	50%	140%
Benzene	2442663		<0.20	<0.20	NA	< 0.20	103%	50%	140%	90%	60%	130%	90%	50%	140%
1,2-Dichloropropane	2442663		<0.20	<0.20	NA	< 0.20	90%	50%	140%	90% 105%	60%	130%	90% 97%	50%	140%
Trichloroethylene	2442003		<0.20	<0.20	NA	< 0.20	90% 98%	50%	140%	95%	60%	130%	97% 91%	50%	140%
Bromodichloromethane	2442663		<0.20	<0.20	NA	< 0.20	100%	50%	140%	116%	60%	130%	109%	50%	140%
Methyl Isobutyl Ketone	2442663		<1.0	<1.0	NA	< 1.0	88%	50%	140%	87%	50%	140%	111%	50%	140%
1,1,2-Trichloroethane			<0.20				99%			91%	60%	130%	115%	50%	140%
Toluene	2442663			< 0.20	NA	< 0.20		50%	140%					50%	140%
Dibromochloromethane	2442663 2442663		<0.20	<0.20	NA	< 0.20	88% 105%	50% 50%	140% 140%	98% 95%	60% 60%	130% 130%	104% 91%	50%	140%
Ethylene Dibromide	2442663 2442663		<0.10 <0.10	<0.10 <0.10	NA NA	< 0.10 < 0.10	85%	50%	140%	95% 99%	60%	130%	91% 75%	50%	140%
Tetrachloroethylene	0440662		<0.20	<0.20	NIA	< 0.20	0.00/	E00/	1400/	0.49/	60%	1200/	1000/	50%	140%
1,1,1,2-Tetrachloroethane	2442663 2442663		<0.20 <0.10	<0.20 <0.10	NA	< 0.20	82% 99%	50%	140% 140%	94% 97%		130% 130%	100% 100%	50%	140%
					NA	< 0.10									
Chlorobenzene Ethylbenzene	2442663 2442663		<0.10 <0.10	<0.10	NA	< 0.10 < 0.10	104% 93%	50% 50%	140% 140%	95% 96%		130% 130%	100% 112%	50% 50%	140% 140%
m & p-Xylene	2442663 2442663		<0.10	<0.10 <0.20	NA NA	< 0.10	93% 101%		140%	90% 93%		130%	112%	50%	140%
Bromoform	2442663		<0.10	<0.10	NA	< 0.10	92%		140%	104%		130%	97%	50%	140%
Styrene	2442663		<0.10	<0.10	NA	< 0.10	90%	50%	140%	89%		130%	97%	50%	140%
1,1,2,2-Tetrachloroethane	2442663		<0.10	<0.10	NA	< 0.10	97%	50%	140%	91%		130%	113%	50%	140%
o-Xylene	2442663		<0.10	<0.10	NA	< 0.10	80%	50%	140%	87%	60%	130%	105%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

SAMPLING SITE:166 South Service Road East

AGAT WORK ORDER: 21T742871

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

		٦	Frace	Org	anics	s Ana	alysis	(Cor	ntin	ued)					
RPT Date:	RPT Date: May 13, 2021 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE															KE
	PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv		ptable nits	Recovery	Lin	ptable nits
			ld					Value	Lower	Upper		Lower	Upper	1 2		Upper
1,3-Dichlo	robenzene	2442663		<0.10	<0.10	NA	< 0.10	100%	50%	140%	86%	60%	130%	84%	50%	140%
1,4-Dichlo	robenzene	2442663		<0.10	<0.10	NA	< 0.10	104%	50%	140%	89%	60%	130%	83%	50%	140%
1,2-Dichlo	robenzene	2442663		<0.10	<0.10	NA	< 0.10	102%	50%	140%	100%	60%	130%	95%	50%	140%
n-Hexane		2442663		<0.20	<0.20	NA	< 0.20	100%	50%	140%	100%	60%	130%	77%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 9

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

AGAT WORK ORDER: 21T742871 ATTENTION TO: Rebecca Morrison

SAMPLING SITE:166 South Service Road East

SAMPLED BY:AB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		,	
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE
Terphenyl Sediment	VOL-91-5009	modified from MOE PHC E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC. PROJECT: BIGC-ENV-457A

AGAT WORK ORDER: 21T742871 ATTENTION TO: Rebecca Morrison

SAMPLING SITE:166 South Servic	e Road East	SAMPLED BY:AB									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								

AS CO		Lat	oora	tori	es	۸ Ph: 905.7		auga,)0 Fa		14Z 712.5	1Y2 122		Labor Work Or Cooler Q	der #:	21	ned	FIL	42 1e(1			1 i re
Chain of Custody Reco	If this is a	Drinking Water s	ample, plea	se use Drin	king Water Chain of Custody Form	I (potable water	consun	ned by	humans)		-	Arrival T			9:	3	19.4	11	9.	-
Address: <u>6500 Tom Market</u> Mississingh Phone: Reports to be sent to: 1. Email: <u>A Montribus</u>	Motrison n hoad 1 O starter Fax:	lat ve . ieid igi .	(av	(Please	able	oils R406	Pro	Sanita Reg ov. Wa jectiv	у 🗆	ality		-		Dund 1	Time lost Ana urcharge	ilysis) 25 Apply)	r) Req	ο to 7 Βι	d: usines	s Days]N/A
2. Email: Project Information: Project: BIGG Emu- Site Location: 166 South Sampled By: MB	- 45 FA Service Ru	rad East		is Re	Fine s this submission for a cord of Site Condition? Yes 2 No	Ce	eport rtific	: Gul ate d	of Ana				OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holida For 'Same Day' analysis, please contact your AGAT C						TAT holiday		
Contact: Lowine Dough Address: Som as	s Report rty Report ty @ browns	ill To Same: Ye:	Eom	B GW O P S SD SW	nplc Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, FOC	& thorganics	Is - CrVI, CHB, CHWSB	BTEX, F1-F4 PHCs Analyze F4G if required A Yes DNo		Total PCBs Aroclor	1	Characterization TCLP: Cs □ABNs □B(a)P □ PCEs LP Rainwater Leach	SPLP: LI Metals LI VOCS LI SVOCS Excess Soils Characterization Package 74 pH, iCPMS Metals, BTEX, F1-F4	EC/SAR						Potentially Hazardous or High Concentration $({\bf Y}/{\bf Y})$
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals - I	BTEX	PAHs	Total	VOC	TCLP: Exce:	Exces	Salt -						Potent
MW 1 imv 2 MW 6	May 5 sel	1.00 AM PM 1.5 AM PM 1.20 AM	30 30 40	5W 5W 5W	1				x x x			X X X									
muto.	*	AM AM PM AM PM AM PM	>	(stai					X			¥									
		AM PM AM PM AM PM AM PM								1	1		1900 1900 1900	70570							
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Device UP: DP//28.1511.020		Date Mwy S. Date Date	Time Time Time Time	5: 30	Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign)	nalaj	gn	10			Bate Dulu Date		Tin Tin Tin	U		Nº: T	Page	1 1 1 1 8 2	of_ 25	3: 1 9	36p)

Document ID: DIV-78-1511.020

Pink Copy - Client I Yellow Copy - AGAT | White Copy- AGAT

CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4 416-214-4880 ATTENTION TO: Rebecca Morrison PROJECT: BIGC-ENV-457A AGAT WORK ORDER: 21T741387 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: May 10, 2021 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 17

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

			0.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2021-05-03								I	DATE REPORT	ED: 2021-05-10	
		SAMPLE DES	CRIPTION:	BH1-SS1	BH2- SS1	BH3- SS2	BH4- SS1	BH5- SS2	BH6- SS1	BH7-SS1	BH8- SS2
		DATES	PLE TYPE: SAMPLED:	Soil 2021-04-27 09:30	Soil 2021-04-27 12:15	Soil 2021-04-27 13:35	Soil 2021-04-27 14:25	Soil 2021-04-27 16:50	Soil 2021-04-27 17:30	Soil 2021-04-28 10:05	Soil 2021-04-28 11:15
Parameter	Unit	G/S	RDL	2416477	2416488	2416489	2416490	2416491	2416504	2416722	2416725
Antimony	hð\ð	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	8	6	7	2	4	6	8	7
Barium	µg/g	390	2.0	119	95.3	116	87.1	80.7	81.5	177	175
Beryllium	µg/g	5	0.4	0.9	0.7	0.9	0.9	1.2	0.8	1.2	1.2
Boron	µg/g	120	5	13	9	9	12	19	23	28	22
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.29	0.54	0.53	0.63	0.56	0.41	0.56	0.65
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	24	41	23	20	26	21	30	28
Cobalt	µg/g	22	0.5	12.6	8.7	11.8	8.3	13.5	11.2	15.9	14.1
Copper	µg/g	180	1.0	55.7	48.4	41.5	10.3	23.6	27.2	37.4	17.0
Lead	µg/g	120	1	15	17	10	5	7	9	7	7
Molybdenum	µg/g	6.9	0.5	0.8	1.1	1.3	<0.5	1.6	1.5	2.9	1.8
Nickel	µg/g	130	1	27	20	27	22	31	25	37	34
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	1.1	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.50	0.70	0.99	1.29	1.40	1.68	0.70	0.85	1.47
Vanadium	µg/g	86	0.4	37.2	31.7	39.5	25.6	40.1	33.7	47.5	49.2
Zinc	µg/g	340	5	76	68	58	66	74	76	72	62
Chromium, Hexavalent	µg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, Free	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	1.8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.182	0.231	0.289	0.497	0.497	0.418	0.354	0.331
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.693	0.992	1.38	4.71	4.13	5.11	4.35	2.78
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.71	7.60	7.52	7.60	7.62	7.89	7.93	7.18

Certified By:

AGAT WORK ORDER: 21T741387 **PROJECT: BIGC-ENV-457A**

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-05-03					DATE REPORTED: 2021-05-10
	S		CRIPTION: PLE TYPE: SAMPLED:	BH9- SS1 Soil 2021-04-28 12:25	
Parameter	Unit	G/S	RDL	2416728	
Antimony	µg/g	7.5	0.8	<0.8	
Arsenic	µg/g	18	1	6	
Barium	µg/g	390	2.0	47.1	
Beryllium	µg/g	5	0.4	0.4	
Boron	µg/g	120	5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	
Chromium	µg/g	160	5	12	
Cobalt	µg/g	22	0.5	5.6	
Copper	µg/g	180	1.0	36.9	
Lead	µg/g	120	1	9	
Molybdenum	µg/g	6.9	0.5	<0.5	
Nickel	µg/g	130	1	12	
Selenium	µg/g	2.4	0.8	<0.8	
Silver	µg/g	25	0.5	<0.5	
Thallium	µg/g	1	0.5	<0.5	
Jranium	µg/g	23	0.50	<0.50	
Vanadium	µg/g	86	0.4	21.4	
Zinc	µg/g	340	5	37	
Chromium, Hexavalent	µg/g	10	0.2	<0.2	
Cyanide, Free	µg/g	0.051	0.040	<0.040	
Mercury	µg/g	1.8	0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.142	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.740	
oH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.68	

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-05-03

DATE REPORTED: 2021-05-10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T2 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2416477-2416728 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

DATE REPORTED: 2021-05-10

SAMPLED BY:AB

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2021-05-03

	S	BH10-SS4		
	SAMPLE TYPE:			Soil
		DATES	SAMPLED:	
				14:20
Parameter	Unit	G/S	RDL	2416786
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.76

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T2 S RPI MFT

2416786 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A

O. Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

DATE RECEIVED: 2021-05-03								Γ	DATE REPORTE	ED: 2021-05-10	
		-	CRIPTION: PLE TYPE: SAMPLED:	BH1- SS1 Soil 2021-04-27	BH2- SS1 Soil 2021-04-27	BH3- SS2 Soil 2021-04-27	BH4- SS1 Soil 2021-04-27	BH5- SS2 Soil 2021-04-27	BH6- SS2 Soil 2021-04-27	BH7- SS1 Soil 2021-04-28	BH8- SS2 Soil 2021-04-28
Parameter	Unit	G/S	RDL	09:30 2416477	12:15 2416488	13:35 2416489	14:25 2416490	16:50 2416491	17:40 2416651	10:05 2416722	11:15 2416725
Naphthalene	µg/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.17	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	29	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.74	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benz(a)anthracene	µg/g	0.63	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.21
Indeno(1,2,3-cd)pyrene	µg/g	0.48	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1 and 2 Methlynaphthalene	µg/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	13.7	14.3	9.7	12.5	17.9	13.6	16.1	17.9
Surrogate	Unit	Acceptat	le Limits								
Naphthalene-d8	%	50-	140	72	90	105	84	75	86	80	67
Acenaphthene-d10	%	50-	140	75	113	107	100	88	101	85	88
Chrysene-d12	%	50-	140	82	105	111	110	98	109	92	95

Certified By:

NPopukolof

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A

O Reg 153(511) - PAHs (Soil)

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

				O. Neg.	53(511) - PARS (5011)
DATE RECEIVED: 2021-05-03					DATE REPORTED: 2021-05-10
	5	SAMPLE DES	CRIPTION:	BH9- SS1	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2021-04-28 12:25	
Parameter	Unit	G/S	RDL	2416728	
Naphthalene	µg/g	0.75	0.05	<0.05	
Acenaphthylene	µg/g	0.17	0.05	<0.05	
Acenaphthene	µg/g	29	0.05	<0.05	
Fluorene	µg/g	69	0.05	<0.05	
Phenanthrene	µg/g	7.8	0.05	<0.05	
Anthracene	µg/g	0.74	0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	
Benz(a)anthracene	µg/g	0.63	0.05	<0.05	
Chrysene	µg/g	7.8	0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.48	0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	7.8	0.05	<0.05	
1 and 2 Methlynaphthalene	hð\ð	3.4	0.05	<0.05	
Moisture Content	%		0.1	12.1	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-1	40	99	
Acenaphthene-d10	%	50-1	40	105	
Chrysene-d12	%	50-1	40	108	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T2 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2416477-2416728 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2021-05-03

DATE RECEIVED: 2021-05-03						DATE REPORTED: 2021-05-10
	S	AMPLE DESCR	RIPTION:	BH9- SS2	BH10-SS1	
		SAMPL	E TYPE:	Soil	Soil	
		DATE SA	MPLED:	2021-04-28 12:30	2021-04-28 14:05	
Parameter	Unit	G/S	RDL	2416765	2416771	
Benzene	µg/g	0.17	0.02	<0.02	<0.02	
Foluene	µg/g	6	0.05	<0.05	<0.05	
Ethylbenzene	µg/g	1.6	0.05	<0.05	<0.05	
n & p-Xylene	µg/g		0.05	<0.05	<0.05	
o-Xylene	µg/g		0.05	<0.05	<0.05	
(ylenes (Total)	µg/g	25	0.05	<0.05	<0.05	
-1 (C6 - C10)	µg/g	65	5	<5	<5	
1 (C6 to C10) minus BTEX	µg/g	65	5	<5	<5	
⁻ 2 (C10 to C16)	hð\ð	150	10	<10	<10	
-3 (C16 to C34)	µg/g	1300	50	<50	<50	
⁻ 4 (C34 to C50)	hð\ð	5600	50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	5600	50	NA	NA	
Aoisture Content	%		0.1	16.8	12.6	
Surrogate	Unit	Acceptable	Limits			
Foluene-d8	% Recovery	60-140)	96	84	
Terphenyl	%	60-140)	117	95	

Certified By:

NPopukolof

DATE REPORTED: 2021-05-10

AGAT WORK ORDER: 21T741387 PROJECT: BIGC-ENV-457A 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:166 South Service Road East

ATTENTION TO: Rebecca Morrison

DATE REPORTED: 2021-05-10

SAMPLED BY:AB

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2021-05-03

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to ON T2 S RPI MFT Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2416765-2416771 Results are based on sample dry weight. The C6-C10 fraction is calculated using Toluene response factor. Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

	AGAT	Laboratories		AGAT WORK ORDER: 21T741387				
CLIENT NAME	: B.I.G. CONSULTING INC			ATTENTION TO: Rebec	ca Morris		/www.agatlabs.com	
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT	

Sodium Adsorption Ratio (2:1) (Calc.)

N/A

5

5.11

O. Reg. 153(511) - Metals & Inorganics (Soil)

ON T2 S RPI MFT

BH6- SS1

2416504

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

SAMPLING SITE:166 South Service Road East

AGAT WORK ORDER: 21T741387 ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

Soil Analysis														
RPT Date: May 10, 2021			DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable nits
	ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)													
Antimony	2428862	<0.8	<0.8	NA	< 0.8	111%	70%	130%	109%	80%	120%	76%	70%	130%
Arsenic	2428862	3	3	NA	< 1	129%	70%	130%	105%	80%	120%	111%	70%	130%
Barium	2428862	84.0	82.8	1.4%	< 2.0	100%	70%	130%	102%	80%	120%	92%	70%	130%
Beryllium	2428862	0.7	0.7	NA	< 0.4	120%	70%	130%	109%	80%	120%	120%	70%	130%
Boron	2428862	7	7	NA	< 5	93%	70%	130%	101%	80%	120%	100%	70%	130%
Boron (Hot Water Soluble)	2416477 2416477	0.29	0.25	NA	< 0.10	84%	60%	140%	97%	70%	130%	98%	60%	140%
Cadmium	2428862	<0.5	<0.5	NA	< 0.5	123%	70%	130%	106%	80%	120%	106%	70%	130%
Chromium	2428862	21	21	NA	< 5	114%	70%	130%	106%	80%	120%	109%	70%	130%
Cobalt	2428862	8.1	7.9	2.5%	< 0.5	122%	70%	130%	108%	80%	120%	109%	70%	130%
Copper	2428862	17.6	17.3	1.7%	< 1.0	102%	70%	130%	106%	80%	120%	99%	70%	130%
Lead	2428862	10	9	10.5%	< 1	103%	70%	130%	87%	80%	120%	84%	70%	130%
Molybdenum	2428862	<0.5	<0.5	NA	< 0.5	122%	70%	130%	103%	80%	120%	107%	70%	130%
Nickel	2428862	16	16	0.0%	< 1	119%	70%	130%	108%	80%	120%	107%	70%	130%
Selenium	2428862	1.0	1.1	NA	< 0.8	93%	70%	130%	101%	80%	120%	103%	70%	130%
Silver	2428862	<0.5	<0.5	NA	< 0.5	119%	70%	130%	108%	80%	120%	101%	70%	130%
Thallium	2428862	<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	91%	70%	130%
Uranium	2428862	<0.50	<0.50	NA	< 0.50	102%	70%	130%	84%	80%	120%	83%	70%	130%
Vanadium	2428862	32.3	32.1	0.6%	< 0.4	127%	70%	130%	108%	80%	120%	113%	70%	130%
Zinc	2428862	58	57	1.7%	< 5	113%	70%	130%	108%	80%	120%	107%	70%	130%
Chromium, Hexavalent	2412351	<0.2	<0.2	NA	< 0.2	100%	70%	130%	97%	80%	120%	95%	70%	130%
Cyanide, Free	2375900	<0.040	<0.040	NA	< 0.040	106%	70%	130%	114%	80%	120%	88%	70%	130%
Mercury	2428862	<0.10	<0.10	NA	< 0.10	112%	70%	130%	99%	80%	120%	98%	70%	130%
Electrical Conductivity (2:1)	2416477 2416477	0.182	0.186	2.2%	< 0.005	101%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2416477 2416477	0.693	0.704	1.6%	NA									
pH, 2:1 CaCl2 Extraction	2375900	7.50	7.45	0.7%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl2 Extraction	2375900	7.50	7.45	0.7%	NA	100%	80%	120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Page 11 of 17

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

SAMPLING SITE:166 South Service Road East

AGAT WORK ORDER: 21T741387 ATTENTION TO: Rebecca Morrison

SAMPLED BY:AB

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: May 10, 2021			C	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK		MATRIX SPIKE		IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	Lin	ptable nits	Recovery		eptable mits
		Ia	-	-			value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	92%	50%	140%	88%	50%	140%	92%	50%	140%
Acenaphthylene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	109%	50%	140%	76%	50%	140%	105%	50%	140%
Acenaphthene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	115%	50%	140%	77%	50%	140%	105%	50%	140%
Fluorene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	115%	50%	140%	73%	50%	140%	99%	50%	140%
Phenanthrene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	112%	50%	140%	74%	50%	140%	89%	50%	140%
Anthracene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	117%	50%	140%	74%	50%	140%	98%	50%	140%
Fluoranthene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	107%	50%	140%	86%	50%	140%	107%	50%	140%
Pyrene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	115%	50%	140%	85%	50%	140%	106%	50%	140%
Benz(a)anthracene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	104%	50%	140%	102%	50%	140%	102%	50%	140%
Chrysene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	105%	50%	140%	93%	50%	140%	114%	50%	140%
Benzo(b)fluoranthene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	109%	50%	140%	93%	50%	140%	98%	50%	140%
Benzo(k)fluoranthene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	79%	50%	140%	69%	50%	140%	87%	50%	140%
Benzo(a)pyrene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	100%	50%	140%	77%	50%	140%	91%	50%	140%
Indeno(1,2,3-cd)pyrene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	103%	50%	140%	58%	50%	140%	72%	50%	140%
Dibenz(a,h)anthracene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	112%	50%	140%	74%	50%	140%	95%	50%	140%
Benzo(g,h,i)perylene	2416489 2	2416489	<0.05	<0.05	NA	< 0.05	88%	50%	140%	73%	50%	140%	76%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	l (Soil)														
Benzene	2414866		< 0.02	< 0.02	NA	< 0.02	86%	60%	140%	81%	60%	140%	116%	60%	140%
Toluene	2414866		< 0.05	< 0.05	NA	< 0.05	83%	60%	140%	95%	60%	140%	77%	60%	140%
Ethylbenzene	2414866		< 0.05	< 0.05	NA	< 0.05	90%	60%	140%	85%	60%	140%	107%	60%	140%
m & p-Xylene	2414866		< 0.05	< 0.05	NA	< 0.05	99%	60%	140%	99%	60%	140%	101%	60%	140%
o-Xylene	2414866		< 0.05	< 0.05	NA	< 0.05	98%	60%	140%	98%	60%	140%	107%	60%	140%
F1 (C6 - C10)	2414866		< 5	< 5	NA	< 5	99%	60%	140%	106%	60%	140%	103%	60%	140%
F2 (C10 to C16)	2415417		< 10	< 10	NA	< 10	93%	60%	140%	92%	60%	140%	92%	60%	140%
F3 (C16 to C34)	2415417		< 50	< 50	NA	< 50	87%	60%	140%	84%	60%	140%	76%	60%	140%
F4 (C34 to C50)	2415417		< 50	< 50	NA	< 50	82%	60%	140%	80%	60%	140%	84%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

AGAT WORK ORDER: 21T741387

ATTENTION TO: Rebecca Morrison

SAMPLING SITE:166 South Service	Road East	SAMPLED BY:AB									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Soil Analysis			1								
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES								
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER								
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER								
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS								
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER								
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES								
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER								

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

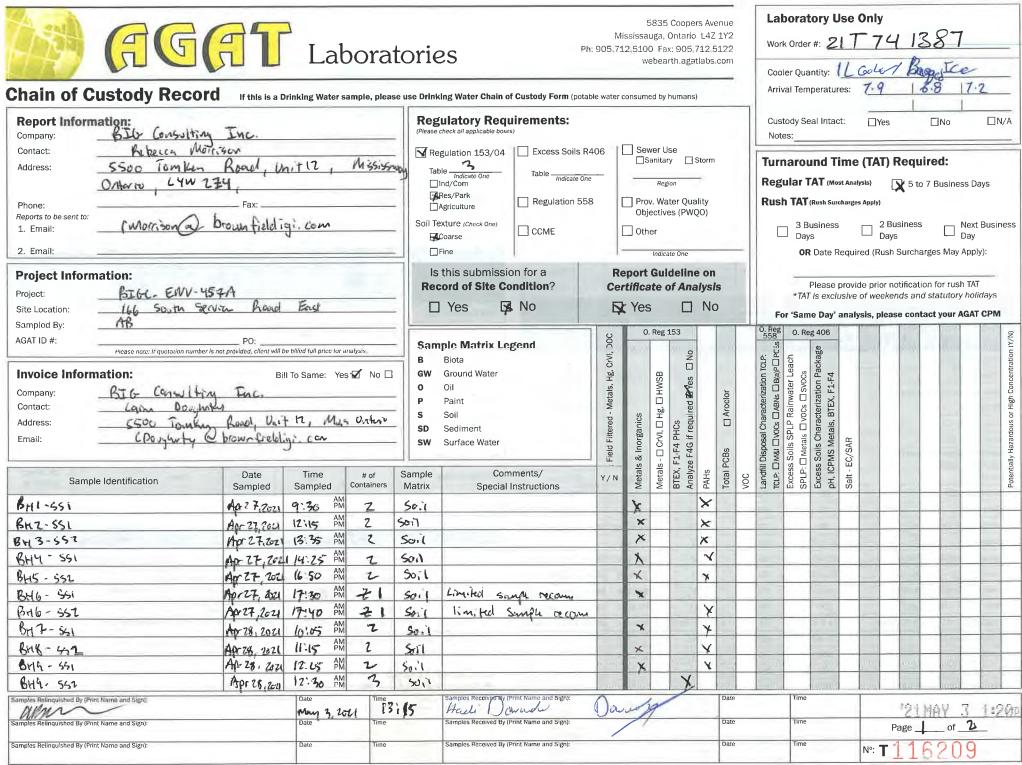
AGAT WORK ORDER: 21T741387

ATTENTION TO: Rebecca Morrison

SAMPLING SITE:166 South Servic	e Road East	SAMPLED BY:AB	5
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			L
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX Toluene-d8	VOL-91-5009 VOL-91-5009	modified from CCME Tier 1 Method modified from EPA SW-846 5030C &	P&T GC/FID (P&T)GC/MS
		8260D	
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

AGAT METHOD SUMMARY (V1)

Method Summary


CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-457A

AGAT WORK ORDER: 21T741387

ATTENTION TO: Rebecca Morrison

SAMPLING SITE:166 South Service F	Road East	SAMPLED BY:AE	3
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Document ID: 0/V-78-1511-020

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT Date issued: December 9, 2029 Page 16 of 17

	(AG	A	Lat	oora	itori	es	Ρ	M 905,71 :	ississau 2.5100	835 Coc ga, Onta Fax: 90 bearth.a	rio L42 5.712.	Z 1Y2 5122		Labo Work O Cooler	rder #:	_			18	gged 1	[cce	
Chain of C	ustody Record	f this is a l	Drinking Water s	ample, plea	ase use Drin	king Water Chain o	f Custody Form (pota	ble water	consume	d by huma	ins)			Arrival					1			
Report Inform Company: Contact:	BEG Consulting Reference Morris	Inc.	_		(Please	gulatory Requ	s)	400	Sou	er Use				Custod Notes:	y Seal I	ntact:]Yes		□No		□n/A
Address:	SSOC Tomkin	Road Un 224	it 12, Mu	ntissnug	Та	egulation 153/04 able <u>7</u> <i>Indicate Onc</i>]Ind/Com	Table			nitary Region] Storn	ı	11	Turna Regula				-		ired:	ness Da	ays
Phone: Reports to be sent to:	E morrison @ 1	Fax:			- Ċ	Res/Park]Agriculture Texture (Check One)	Regulation 55	8		Water (ctives (F				Rush 1				ply)				
1. Email: 2. Email:	f'morrison (ev. 1	Some eng.	CCM.		- ×]Coarse]Fine	CCME		Othe	r Indicate On	2	_			3 Busir Days OR Da		quired	Days		arges Ma	Day	Business y):
Project Inform Project:	BIGC- ENV - 45 166 South Se	7A	End		Re	s this submission cord of Site Co		Ce	tificat	Guidel te of A	nalys	ls								ion for ru d statuto		
Site Location: Sampled By:	Afr Afr	ivice moore	Envi]Yes 🗖	NO	Ļ	(Yes	1		5			Same D	ay' an	alysis	, pleas	e cont	tact you	r AGAT	СРМ
AGAT ID #:	Please note: If quotation number is	PO: PO:	be billed full price for a	analysis	San	nple Matrix Le Biota	gend	crVI, DOC	0.1	Reg 153	°N []			B). Reg 40 agey	-						ation (Y/V)
Involce Inform Company: Contact: Address: Email:	BIG Consultin <u>BIG Consultin</u> <u>Came Poughet</u> <u>Sour as N</u> <u>C</u> Poughety	Tine-	ill To Same: Ye	s 📋 No L	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Fielc Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - 🗆 CrVI, 🗆 Hg, 🗆 HWSB BTEX, F1-F4 PHCs	Analyze F4G if required 🖪 Yes PAHs	CBs Aroclor	Discond Chamdradian	TCLP: CIM&I CVCS: CIABNS CIB(a)PCP. Excess Soils SPLP Rainwater Leach	J Metals □\ Soils Chara	pH, ICPMS Metals, BTEX, F1-F4	Salt - EC/SAH OM					Potentially Hz zardous or High Concertration (γ/ν)
Sampl	e Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals BTEX,	Analyz PAHs	Total PCBs	VOC	TCLP: C	SPLP:	PH, ICF	om om		_			Potentia
BH10-551		Anar 28,202			Soil		_			3		-				_		-		_		
BH10-554	E	Apr 28,202	AM PM		Soil	Limited	Somple reconny										+					
			AM PM		-			-			-					-	-	-				
		-	AM PM AM		-			-	-	-	-	1	-	-	-	-	-	-		_	-	
			AM PM AM		-						-	-	-	-	-	-	-	-			-	
		-	AM PM AM		-	-				-	-		-	-	-	-	-	-	-			
		-	AM PM AM PM		-			-	-	-	-	-	-	-	-	-	-		-		-	
		-						-		-	-		-	-			1	-			-	
		-	AM PM AM PM		-	-		-	-	-		1	+	-		-	-	-			-	
Samples Rolinquished By (Prin	t Name and Sizo):	4	PM	Time	1	Samples Received By (Print Name and Sign1:	P		11	1	Date		1	īme	1	1			11211		1.00-
Samples Refinguished By (Prin	\sim		Mary 3,2	021 13	:(5	Hadi Do Samples Received By (wull'	6	law and	V		Date	_		ime		_		21	MAY A	5	1200
						1			/	1					_			P	age _	<u>6</u> of	1	-
Samples Rolinquished Dy (Pro	at Name and Gign):		Date	Timo		Samplec Received By (rint Nama and Sign):	/	_			Date			IMO		Nº	: T	$\lfloor 1 \rfloor$	62.	15	

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD E, OAKVILLE Your C.O.C. #: 873633-06-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/05/06 Report #: R7114535 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B6266 Received: 2022/05/02, 13:04

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	5	N/A	2022/05/06	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	5	2022/05/04	2022/05/04	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	4	N/A	2022/05/04		EPA 8260C m
1,3-Dichloropropene Sum	1	N/A	2022/05/05		EPA 8260C m
Free (WAD) Cyanide	1	2022/05/04	2022/05/04	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	4	2022/05/05	2022/05/05	CAM SOP-00457	OMOE E3015 m
Conductivity	5	2022/05/04	2022/05/04	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	5	2022/05/04	2022/05/04	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	5	2022/05/04	2022/05/05	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	3	2022/05/04	2022/05/04	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	2	2022/05/05	2022/05/05	CAM SOP-00447	EPA 6020B m
Moisture	10	N/A	2022/05/02	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2022/05/04	2022/05/05	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	4	2022/05/04	2022/05/06	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	1	2022/05/04	2022/05/04	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	4	2022/05/05	2022/05/05	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	5	N/A	2022/05/05	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	4	N/A	2022/05/03	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2022/05/04	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 23

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD E, OAKVILLE Your C.O.C. #: 873633-06-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/05/06 Report #: R7114535 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B6266

Received: 2022/05/02, 13:04

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 23

O.REG 153 METALS & INORGANICS PKG (SOIL)

Calculated Parameters Sodium Adsorption Ratio Inorganics Conductivity Maxilable (CaCl2) pH m WAD Cyanide (Free) u Chromium (VI) u Metals u Hot Water Ext. Boron (B) u Acid Extractable Antimony (Sb) u Acid Extractable Barium (Ba) u Acid Extractable Boron (B) u Acid Extractable Boron (B) u Acid Extractable Cadmium (Cd) u	INITS	Criteria	2022/04/27 08:27 873633-06-01			2022/04/27 08:27		
Calculated ParametersSodium Adsorption RatioIInorganicsIConductivitymAvailable (CaCl2) pHIWAD Cyanide (Free)IChromium (VI)IMetalsIHot Water Ext. Boron (B)IAcid Extractable Antimony (Sb)IAcid Extractable Barium (Ba)IAcid Extractable Boron (B)IAcid Extractable Boron (B)IAcid Extractable Boron (B)IAcid Extractable Cadmium (Cd)I		Criteria						
Calculated Parameters Sodium Adsorption Ratio Inorganics Conductivity Maxilable (CaCl2) pH m WAD Cyanide (Free) u Chromium (VI) u Metals u Hot Water Ext. Boron (B) u Acid Extractable Antimony (Sb) u Acid Extractable Barium (Ba) u Acid Extractable Boron (B) u Acid Extractable Boron (B) u Acid Extractable Cadmium (Cd) u		Criteria	BU101 CC1			873633-06-01		
Sodium Adsorption Ratio I Inorganics m Conductivity m Available (CaCl2) pH u WAD Cyanide (Free) u Chromium (VI) u Metals u Hot Water Ext. Boron (B) u Acid Extractable Antimony (Sb) u Acid Extractable Barium (Ba) u Acid Extractable Boron (B) u Acid Extractable Boron (B) u Acid Extractable Cadmium (Cd) u			BH101-SS1	RDL	QC Batch	BH101-SS1 Lab-Dup	RDL	QC Batch
InorganicsConductivitymAvailable (CaCl2) pHmWAD Cyanide (Free)uChromium (VI)uMetalsmHot Water Ext. Boron (B)uAcid Extractable Antimony (Sb)uAcid Extractable Arsenic (As)uAcid Extractable Barium (Ba)uAcid Extractable Boron (B)uAcid Extractable Boron (B)uAcid Extractable Boron (B)u								
Conductivity m Available (CaCl2) pH m WAD Cyanide (Free) u Chromium (VI) u Metals m Hot Water Ext. Boron (B) u Acid Extractable Antimony (Sb) u Acid Extractable Arsenic (As) u Acid Extractable Barium (Ba) u Acid Extractable Boron (B) u Acid Extractable Boron (B) u Acid Extractable Cadmium (Cd) u	N/A	5.0	0.84		7970854			
Available (CaCl2) pHWAD Cyanide (Free)Chromium (VI)MetalsHot Water Ext. Boron (B)Acid Extractable Antimony (Sb)Acid Extractable Arsenic (As)Acid Extractable Barium (Ba)Acid Extractable Boron (B)Acid Extractable Boron (B)Acid Extractable Boron (B)					•			
WAD Cyanide (Free)uChromium (VI)uMetalsHot Water Ext. Boron (B)uAcid Extractable Antimony (Sb)uAcid Extractable Arsenic (As)uAcid Extractable Barium (Ba)uAcid Extractable Boron (B)uAcid Extractable Boron (B)uAcid Extractable Cadmium (Cd)u	nS/cm	0.7	0.19	0.002	7975079	0.19	0.002	7975079
Chromium (VI)LMetalsHot Water Ext. Boron (B)Acid Extractable Antimony (Sb)Acid Extractable Arsenic (As)Acid Extractable Barium (Ba)Acid Extractable Beryllium (Be)Acid Extractable Boron (B)Acid Extractable Cadmium (Cd)	рН	-	8.03		7977381			
Metals Hot Water Ext. Boron (B) Acid Extractable Antimony (Sb) Acid Extractable Arsenic (As) Acid Extractable Barium (Ba) Acid Extractable Beryllium (Be) Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	ug/g	0.051	ND	0.01	7977053			
Hot Water Ext. Boron (B)uAcid Extractable Antimony (Sb)uAcid Extractable Arsenic (As)uAcid Extractable Barium (Ba)uAcid Extractable Beryllium (Be)uAcid Extractable Boron (B)uAcid Extractable Cadmium (Cd)u	ug/g	10	ND	0.18	7975923			
Acid Extractable Antimony (Sb)LAcid Extractable Arsenic (As)LAcid Extractable Barium (Ba)LAcid Extractable Beryllium (Be)LAcid Extractable Boron (B)LAcid Extractable Cadmium (Cd)L	,							
Acid Extractable Arsenic (As)LAcid Extractable Barium (Ba)LAcid Extractable Beryllium (Be)LAcid Extractable Boron (B)LAcid Extractable Cadmium (Cd)L	ug/g	1.5	0.11	0.050	7974513			
Acid Extractable Barium (Ba)uAcid Extractable Beryllium (Be)uAcid Extractable Boron (B)uAcid Extractable Cadmium (Cd)u	ug/g	7.5	ND	0.20	7974623			
Acid Extractable Beryllium (Be)LAcid Extractable Boron (B)LAcid Extractable Cadmium (Cd)L	ug/g	18	6.6	1.0	7974623			
Acid Extractable Boron (B)	ug/g	390	54	0.50	7974623			
Acid Extractable Cadmium (Cd)	ug/g	5	0.32	0.20	7974623			
	ug/g	120	7.0	5.0	7974623			
Acid Extractable Chromium (Cr)	ug/g	1.2	0.11	0.10	7974623			
	ug/g	160	12	1.0	7974623			
Acid Extractable Cobalt (Co)	ug/g	22	7.1	0.10	7974623			
Acid Extractable Copper (Cu)	ug/g	180	48	0.50	7974623			
Acid Extractable Lead (Pb)	ug/g	120	17	1.0	7974623			
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.67	0.50	7974623			
Acid Extractable Nickel (Ni)	ug/g	130	13	0.50	7974623			
Acid Extractable Selenium (Se)	ug/g	2.4	ND	0.50	7974623			
Acid Extractable Silver (Ag)	ug/g	25	ND	0.20	7974623			
Acid Extractable Thallium (Tl) ເ	ug/g	1	0.10	0.050	7974623			
Acid Extractable Uranium (U) u	ug/g	23	0.44	0.050	7974623			
Acid Extractable Vanadium (V)	ug/g	86	20	5.0	7974623			
Acid Extractable Zinc (Zn) u	ug/g	340	50	5.0	7974623			
No Fill No Exceedance								
Grey Exceeds 1 criteria	policy	/level						
Black Exceeds both crite	eria/le	vels						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 23

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				SMS942			SMS942			
Sampling Data				2022/04/27			2022/04/27			
Sampling Date				08:27			08:27			
COC Number				873633-06-01			873633-06-01			
		UNITS	Criteria	BH101-SS1	RDL	QC Batch	BH101-SS1 Lab-Dup	RDL	QC Batch	
Acid Extractable Me	rcury (Hg)	ug/g	1.8	ND	0.050	7974623				
No Fill	No Exceedance									
Grey	Exceeds 1 crite	ria policy	/level							
Black	Exceeds both c	riteria/le	vels							
RDL = Reportable De	etection Limit									
QC Batch = Quality (Control Batch									
Lab-Dup = Laborator	ry Initiated Duplic	ate								
Criteria: Ontario Reg	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
able 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition										
oil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil										
ND = Not Detected a	at a concentratior	equal o	r greater	than the indicat	ted Det	ection Limi	t.			

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			SMS944		SMS945		SMS947		
Sampling Data			2022/04/27		2022/04/27		2022/04/28		
Sampling Date			09:00		09:57		09:09		
COC Number			873633-06-01		873633-06-01		873633-06-01		
	UNITS	Criteria	BH101-SS4	QC Batch	BH102-SS1	QC Batch	BH103-SS1	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	5.0	1.0	7970854	9.5	7970854	0.74		7970854
Inorganics	•						•		
Conductivity	mS/cm	0.7	0.18	7975079	0.29	7975867	0.13	0.002	7975079
Available (CaCl2) pH	рН	-	7.79	7977381	8.07	7977381	7.99		7977381
WAD Cyanide (Free)	ug/g	0.051	ND	7977053	ND	7977053	ND	0.01	7977053
Chromium (VI)	ug/g	10	ND	7975923	ND	7975923	ND	0.18	7975923
Metals	•								
Hot Water Ext. Boron (B)	ug/g	1.5	0.44	7974513	0.091	7974513	0.087	0.050	7974513
Acid Extractable Antimony (Sb)	ug/g	7.5	0.36	7974623	ND	7974623	ND	0.20	7977284
Acid Extractable Arsenic (As)	ug/g	18	6.5	7974623	6.9	7974623	7.9	1.0	7977284
Acid Extractable Barium (Ba)	ug/g	390	120	7974623	54	7974623	46	0.50	7977284
Acid Extractable Beryllium (Be)	ug/g	5	0.95	7974623	0.33	7974623	0.33	0.20	7977284
Acid Extractable Boron (B)	ug/g	120	17	7974623	7.4	7974623	7.5	5.0	7977284
Acid Extractable Cadmium (Cd)	ug/g	1.2	ND	7974623	0.11	7974623	0.11	0.10	7977284
Acid Extractable Chromium (Cr)	ug/g	160	27	7974623	11	7974623	11	1.0	7977284
Acid Extractable Cobalt (Co)	ug/g	22	15	7974623	7.1	7974623	6.9	0.10	7977284
Acid Extractable Copper (Cu)	ug/g	180	54	7974623	50	7974623	53	0.50	7977284
Acid Extractable Lead (Pb)	ug/g	120	9.0	7974623	17	7974623	17	1.0	7977284
Acid Extractable Molybdenum (Mo)	ug/g	6.9	2.3	7974623	0.75	7974623	0.75	0.50	7977284
Acid Extractable Nickel (Ni)	ug/g	130	35	7974623	14	7974623	14	0.50	7977284
Acid Extractable Selenium (Se)	ug/g	2.4	ND	7974623	ND	7974623	ND	0.50	7977284
Acid Extractable Silver (Ag)	ug/g	25	ND	7974623	ND	7974623	ND	0.20	7977284
Acid Extractable Thallium (Tl)	ug/g	1	0.11	7974623	0.10	7974623	0.096	0.050	7977284
Acid Extractable Uranium (U)	ug/g	23	1.7	7974623	0.44	7974623	0.46	0.050	7977284
Acid Extractable Vanadium (V)	ug/g	86	33	7974623	21	7974623	20	5.0	7977284
Acid Extractable Zinc (Zn)	ug/g	340	70	7974623	50	7974623	52	5.0	7977284
Acid Extractable Mercury (Hg)	ug/g	1.8	ND	7974623	ND	7974623	ND	0.050	7977284
No Fill No Exceeda	ince								
Curry Eveneds 1 a	ritoria na	licy/lovel							

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 5 of 23

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			SMS950		
Commisso Data			2022/04/28		
Sampling Date			10:33		
COC Number			873633-06-01		
	UNITS	Criteria	BH104-SS1	RDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	5.0	0.92		7970854
Inorganics					
Conductivity	mS/cm	0.7	0.50	0.002	7975723
Available (CaCl2) pH	рН	-	7.16		7975656
WAD Cyanide (Free)	ug/g	0.051	ND	0.01	7974615
Chromium (VI)	ug/g	10	ND	0.18	7974973
Metals	•				
Hot Water Ext. Boron (B)	ug/g	1.5	0.86	0.050	7974513
Acid Extractable Antimony (Sb)	ug/g	7.5	0.38	0.20	7977284
Acid Extractable Arsenic (As)	ug/g	18	6.5	1.0	7977284
Acid Extractable Barium (Ba)	ug/g	390	130	0.50	7977284
Acid Extractable Beryllium (Be)	ug/g	5	0.71	0.20	7977284
Acid Extractable Boron (B)	ug/g	120	12	5.0	7977284
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.42	0.10	7977284
Acid Extractable Chromium (Cr)	ug/g	160	17	1.0	7977284
Acid Extractable Cobalt (Co)	ug/g	22	7.6	0.10	7977284
Acid Extractable Copper (Cu)	ug/g	180	21	0.50	7977284
Acid Extractable Lead (Pb)	ug/g	120	25	1.0	7977284
Acid Extractable Molybdenum (Mo)	ug/g	6.9	2.0	0.50	7977284
Acid Extractable Nickel (Ni)	ug/g	130	16	0.50	7977284
Acid Extractable Selenium (Se)	ug/g	2.4	ND	0.50	7977284
Acid Extractable Silver (Ag)	ug/g	25	ND	0.20	7977284
Acid Extractable Thallium (Tl)	ug/g	1	0.13	0.050	7977284
Acid Extractable Uranium (U)	ug/g	23	2.4	0.050	7977284
No Fill No Exceedance					
Grey Exceeds 1 criteria po	licy/leve	I			

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas	; ID			SMS950						
Sampling Date				2022/04/28 10:33						
COC Number				873633-06-01						
		UNITS	Criteria	BH104-SS1	RDL	QC Batch				
Acid Extractabl	e Vanadium (V)	ug/g	86	27	5.0	7977284				
Acid Extractabl	e Zinc (Zn)	ug/g	340	120	5.0	7977284				
Acid Extractabl	e Mercury (Hg)	ug/g	1.8	ND	0.050	7977284				
No Fill	No Exceedance	No Exceedance								
Grey	Exceeds 1 criteria po	licy/leve	I							
Black	Exceeds both criteria	/levels								
RDL = Reportat	ole Detection Limit									
QC Batch = Qua	ality Control Batch									
Criteria: Ontari	o Reg. 153/04 (Amend	ed April	15 <i>,</i> 2011))						
Table 2: Full De	pth Generic Site Condi	tion Star	ndards in	a Potable Grour	nd Wate	er				
Condition										
Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil										
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.										

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			SMS942		SMS944			SMS944		
Sampling Data			2022/04/27		2022/04/27			2022/04/27		
Sampling Date			08:27		09:00			09:00		
COC Number			873633-06-01		873633-06-01			873633-06-01		
	UNITS	Criteria	BH101-SS1	QC Batch	BH101-SS4	RDL	QC Batch	BH101-SS4 Lab-Dup	RDL	QC Batch
Inorganics										
Moisture	%	-	5.3	7971056	14	1.0	7971056			
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	-	ND	7970906	ND	0.0071	7970907			
Polyaromatic Hydrocarbons	•								•	
Acenaphthene	ug/g	29	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Acenaphthylene	ug/g	0.17	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Anthracene	ug/g	0.74	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Benzo(a)anthracene	ug/g	0.63	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Benzo(a)pyrene	ug/g	0.3	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Benzo(b/j)fluoranthene	ug/g	0.78	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Benzo(g,h,i)perylene	ug/g	7.8	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Benzo(k)fluoranthene	ug/g	0.78	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Chrysene	ug/g	7.8	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Dibenzo(a,h)anthracene	ug/g	0.1	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Fluoranthene	ug/g	0.69	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Fluorene	ug/g	69	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Indeno(1,2,3-cd)pyrene	ug/g	0.48	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
1-Methylnaphthalene	ug/g	3.4	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
2-Methylnaphthalene	ug/g	3.4	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Naphthalene	ug/g	0.75	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Phenanthrene	ug/g	7.8	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Pyrene	ug/g	78	ND	7974492	ND	0.0050	7974492	ND	0.0050	7974492
Surrogate Recovery (%)	•									
D10-Anthracene	%	-	103	7974492	95		7974492	95		7974492
D14-Terphenyl (FS)	%	-	94	7974492	89		7974492	96		7974492
D8-Acenaphthylene	%	-	92	7974492	82		7974492	89		7974492
No Fill No	Exceeda	ince							•	
	eeds 1 c	riteria po	licy/level							
		th criteria								
RDL = Reportable Detection I										
QC Batch = Quality Control B										
Lab-Dup = Laboratory Initiate		ate								
Criteria: Ontario Reg. 153/04			15, 2011)							
Table 2: Full Depth Generic S	ite Cond	ition Stan	dards in a Potal			n				
Soil - Residential/Parkland/In		•	•							
ND = Not Detected at a conc	entratio	n equal oi	r greater than th	ne indicated	d Detection Lim	it.				

Page 8 of 23

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			SMS945		SMS947		SMS950		
Sampling Date			2022/04/27		2022/04/28		2022/04/28		
Sampling Date			09:57		09:09		10:33		
COC Number			873633-06-01		873633-06-01		873633-06-01		
	UNITS	Criteria	BH102-SS1	QC Batch	BH103-SS1	QC Batch	BH104-SS1	RDL	QC Batch
Inorganics									
Moisture	%	-	4.5	7971056	4.9	7971056	16	1.0	7971521
Calculated Parameters			•		•		•		
Methylnaphthalene, 2-(1) ug/g	-	ND	7970906	ND	7970907	ND	0.0071	797031
Polyaromatic Hydrocarb	ons		•		•	•	•		
Acenaphthene	ug/g	29	ND	7974492	ND	7974492	ND	0.0050	7974492
Acenaphthylene	ug/g	0.17	ND	7974492	ND	7974492	ND	0.0050	7974492
Anthracene	ug/g	0.74	ND	7974492	ND	7974492	ND	0.0050	7974492
Benzo(a)anthracene	ug/g	0.63	ND	7974492	ND	7974492	0.0074	0.0050	797449
Benzo(a)pyrene	ug/g	0.3	ND	7974492	ND	7974492	0.0093	0.0050	7974492
Benzo(b/j)fluoranthene	ug/g	0.78	ND	7974492	ND	7974492	0.015	0.0050	797449
Benzo(g,h,i)perylene	ug/g	7.8	ND	7974492	ND	7974492	0.012	0.0050	797449
Benzo(k)fluoranthene	ug/g	0.78	ND	7974492	ND	7974492	ND	0.0050	797449
Chrysene	ug/g	7.8	ND	7974492	ND	7974492	0.0093	0.0050	797449
Dibenzo(a,h)anthracene	ug/g	0.1	ND	7974492	ND	7974492	ND	0.0050	797449
Fluoranthene	ug/g	0.69	ND	7974492	ND	7974492	0.021	0.0050	797449
Fluorene	ug/g	69	ND	7974492	ND	7974492	ND	0.0050	797449
Indeno(1,2,3-cd)pyrene	ug/g	0.48	ND	7974492	ND	7974492	0.0085	0.0050	797449
1-Methylnaphthalene	ug/g	3.4	ND	7974492	ND	7974492	ND	0.0050	797449
2-Methylnaphthalene	ug/g	3.4	ND	7974492	ND	7974492	ND	0.0050	797449
Naphthalene	ug/g	0.75	ND	7974492	ND	7974492	ND	0.0050	797449
Phenanthrene	ug/g	7.8	ND	7974492	ND	7974492	0.010	0.0050	797449
Pyrene	ug/g	78	ND	7974492	ND	7974492	0.017	0.0050	797449
Surrogate Recovery (%)	·				•				
D10-Anthracene	%	-	96	7974492	97	7974492	92		797449
D14-Terphenyl (FS)	%	-	97	7974492	95	7974492	95		797449
D8-Acenaphthylene	%	-	90	7974492	88	7974492	86		797449
No Fill	No Exceedan	ce							
Grey	Exceeds 1 cri	teria poli	cy/level						
	Exceeds both								
RDL = Reportable Detect									
QC Batch = Quality Contr									
Criteria: Ontario Reg. 15		led April	15, 2011)						

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition
 Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			SMS943	SMS946			SMS946		
Sampling Data			2022/04/27	2022/04/27			2022/04/27		
Sampling Date			08:33	10:04			10:04		
COC Number			873633-06-01	873633-06-01			873633-06-01		
	UNITS	Criteria	BH101-SS2	BH102-SS2	RDL	QC Batch	BH102-SS2 Lab-Dup	RDL	QC Batch
Inorganics									
Moisture	%	-	4.4	4.6	1.0	7971056	4.6	1.0	7971056
Calculated Parameters				•					
1,3-Dichloropropene (cis+trans)	ug/g	0.081	ND	ND	0.050	7970756			
Volatile Organics	•		•	*	•		•		
Acetone (2-Propanone)	ug/g	28	ND	ND	0.49	7972932			
Benzene	ug/g	0.17	ND	ND	0.0060	7972932			
Bromodichloromethane	ug/g	1.9	ND	ND	0.040	7972932			
Bromoform	ug/g	0.26	ND	ND	0.040	7972932			
Bromomethane	ug/g	0.05	ND	ND	0.040	7972932			
Carbon Tetrachloride	ug/g	0.12	ND	ND	0.040	7972932			
Chlorobenzene	ug/g	2.7	ND	ND	0.040	7972932			
Chloroform	ug/g	0.17	ND	ND	0.040	7972932			
Dibromochloromethane	ug/g	2.9	ND	ND	0.040	7972932			
1,2-Dichlorobenzene	ug/g	1.7	ND	ND	0.040	7972932			
1,3-Dichlorobenzene	ug/g	6	ND	ND	0.040	7972932			
1,4-Dichlorobenzene	ug/g	0.097	ND	ND	0.040	7972932			
Dichlorodifluoromethane (FREON	12) ug/g	25	ND	ND	0.040	7972932			
1,1-Dichloroethane	ug/g	0.6	ND	ND	0.040	7972932			
1,2-Dichloroethane	ug/g	0.05	ND	ND	0.049	7972932			
1,1-Dichloroethylene	ug/g	0.05	ND	ND	0.040	7972932			
cis-1,2-Dichloroethylene	ug/g	2.5	ND	ND	0.040	7972932			
trans-1,2-Dichloroethylene	ug/g	0.75	ND	ND	0.040	7972932			
1,2-Dichloropropane	ug/g	0.085	ND	ND	0.040	7972932			
cis-1,3-Dichloropropene	ug/g	0.081	ND	ND	0.030	7972932			
trans-1,3-Dichloropropene	ug/g	0.081	ND	ND	0.040	7972932			
Ethylbenzene	ug/g	1.6	ND	ND	0.010	7972932		_	
No Fill No Exce	edance					-			
Grey Exceeds	1 criteria polic	y/level							
	both criteria/le								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated D									

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 10 of 23

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			SMS943	SMS946			SMS946		
			2022/04/27	2022/04/27			2022/04/27		
Sampling Date			08:33	10:04			10:04		
COC Number			873633-06-01	873633-06-01			873633-06-01		
	UNITS	Criteria	BH101-SS2	BH102-SS2	RDL	QC Batch	BH102-SS2 Lab-Dup	RDL	QC Batch
Ethylene Dibromide	ug/g	0.05	ND	ND	0.040	7972932			
Hexane	ug/g	34	ND	ND	0.040	7972932			
Methylene Chloride(Dichloromethane)	ug/g	0.96	ND	ND	0.049	7972932			
Methyl Ethyl Ketone (2-Butanone)	ug/g	44	ND	ND	0.40	7972932			
Methyl Isobutyl Ketone	ug/g	4.3	ND	ND	0.40	7972932			
Methyl t-butyl ether (MTBE)	ug/g	1.4	ND	ND	0.040	7972932			
Styrene	ug/g	2.2	ND	ND	0.040	7972932			
1,1,1,2-Tetrachloroethane	ug/g	0.05	ND	ND	0.040	7972932			
1,1,2,2-Tetrachloroethane	ug/g	0.05	ND	ND	0.040	7972932			
Tetrachloroethylene	ug/g	2.3	ND	ND	0.040	7972932			
Toluene	ug/g	6	ND	ND	0.020	7972932			
1,1,1-Trichloroethane	ug/g	3.4	ND	ND	0.040	7972932			
1,1,2-Trichloroethane	ug/g	0.05	ND	ND	0.040	7972932			
Trichloroethylene	ug/g	0.52	ND	ND	0.010	7972932			
Trichlorofluoromethane (FREON 11)	ug/g	5.8	ND	ND	0.040	7972932			
Vinyl Chloride	ug/g	0.022	ND	ND	0.019	7972932			
p+m-Xylene	ug/g	-	ND	ND	0.020	7972932			
o-Xylene	ug/g	-	ND	ND	0.020	7972932			
Total Xylenes	ug/g	25	ND	ND	0.020	7972932			
F1 (C6-C10)	ug/g	65	ND	ND	10	7972932			
F1 (C6-C10) - BTEX	ug/g	65	ND	ND	10	7972932			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	150	ND	ND	10	7976835			
F3 (C16-C34 Hydrocarbons)	ug/g	1300	ND	ND	50	7976835			
F4 (C34-C50 Hydrocarbons)	ug/g	5600	ND	ND	50	7976835			
Reached Baseline at C50	ug/g	-	Yes	Yes		7976835			
No Fill No Exceedance	2								
Grey Exceeds 1 crite	ria polic	y/level							
Black Exceeds both o	riteria/le	evels							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicat	е								
Criteria: Ontario Reg. 153/04 (Amended	April 15	, 2011)							

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 11 of 23

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID				SMS943	SMS946			SMS946		
Sampling Date				2022/04/27 08:33	2022/04/27 10:04			2022/04/27 10:04		
COC Number				873633-06-01	873633-06-01			873633-06-01		
	U	JNITS	Criteria	BH101-SS2	BH102-SS2	RDL	QC Batch	BH102-SS2 Lab-Dup	RDL	QC Batch
Surrogate Recovery (%)									
o-Terphenyl		%	-	111	94		7976835			
4-Bromofluorobenzene		%	-	97	97		7972932			
D10-o-Xylene		%	-	80	86		7972932			
D4-1,2-Dichloroethane		%	-	104	102		7972932			
D8-Toluene		%	-	100	100		7972932			
No Fill	No Exceedance									
Grey	Exceeds 1 criteria	policy	//level							
Black	Exceeds both crite	eria/le	evels							
RDL = Reportable Detec	ction Limit									
QC Batch = Quality Con	trol Batch									
Lab-Dup = Laboratory In	nitiated Duplicate									
Criteria: Ontario Reg. 1	53/04 (Amended Ap	oril 15,	2011)							
Table 2: Full Depth Gen Soil - Residential/Parkla						ו				

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			SMS948	SMS949	SMS951		
Sampling Date			2022/04/28	2022/04/28	2022/04/28		
			09:15	09:50	10:50		
COC Number			873633-06-01	873633-06-01	873633-06-01		
	UNITS	Criteria	BH103-SS2	BH103-SS4	BH104-SS2	RDL	QC Batch
Inorganics							
Moisture	%	-	8.0	14	22	1.0	7971056
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	0.081	ND	ND	ND	0.050	7970756
Volatile Organics							
Acetone (2-Propanone)	ug/g	28	ND	ND	ND	0.49	7972932
Benzene	ug/g	0.17	ND	ND	ND	0.0060	7972932
Bromodichloromethane	ug/g	1.9	ND	ND	ND	0.040	7972932
Bromoform	ug/g	0.26	ND	ND	ND	0.040	7972932
Bromomethane	ug/g	0.05	ND	ND	ND	0.040	7972932
Carbon Tetrachloride	ug/g	0.12	ND	ND	ND	0.040	7972932
Chlorobenzene	ug/g	2.7	ND	ND	ND	0.040	7972932
Chloroform	ug/g	0.17	ND	ND	ND	0.040	7972932
Dibromochloromethane	ug/g	2.9	ND	ND	ND	0.040	7972932
1,2-Dichlorobenzene	ug/g	1.7	ND	ND	ND	0.040	7972932
1,3-Dichlorobenzene	ug/g	6	ND	ND	ND	0.040	7972932
1,4-Dichlorobenzene	ug/g	0.097	ND	ND	ND	0.040	7972932
Dichlorodifluoromethane (FREON 12)	ug/g	25	ND	ND	ND	0.040	7972932
1,1-Dichloroethane	ug/g	0.6	ND	ND	ND	0.040	7972932
1,2-Dichloroethane	ug/g	0.05	ND	ND	ND	0.049	7972932
1,1-Dichloroethylene	ug/g	0.05	ND	ND	ND	0.040	7972932
cis-1,2-Dichloroethylene	ug/g	2.5	ND	ND	ND	0.040	7972932
trans-1,2-Dichloroethylene	ug/g	0.75	ND	ND	ND	0.040	7972932
1,2-Dichloropropane	ug/g	0.085	ND	ND	ND	0.040	7972932
cis-1,3-Dichloropropene	ug/g	0.081	ND	ND	ND	0.030	7972932
trans-1,3-Dichloropropene	ug/g	0.081	ND	ND	ND	0.040	7972932
Ethylbenzene	ug/g	1.6	ND	ND	ND	0.010	7972932
Ethylene Dibromide	ug/g	0.05	ND	ND	ND	0.040	7972932
No Fill No Exceedance	5	-					

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Grey

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 13 of 23

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			SMS948	SMS949	SMS951		
			2022/04/28	2022/04/28	2022/04/28		
Sampling Date			09:15	09:50	10:50		
COC Number			873633-06-01	873633-06-01	873633-06-01		
	UNITS	Criteria	BH103-SS2	BH103-SS4	BH104-SS2	RDL	QC Batch
Hexane	ug/g	34	ND	ND	ND	0.040	7972932
Methylene Chloride(Dichloromethane)	ug/g	0.96	ND	ND	ND	0.049	7972932
Methyl Ethyl Ketone (2-Butanone)	ug/g	44	ND	ND	ND	0.40	7972932
Methyl Isobutyl Ketone	ug/g	4.3	ND	ND	ND	0.40	7972932
Methyl t-butyl ether (MTBE)	ug/g	1.4	ND	ND	ND	0.040	7972932
Styrene	ug/g	2.2	ND	ND	ND	0.040	7972932
1,1,1,2-Tetrachloroethane	ug/g	0.05	ND	ND	ND	0.040	7972932
1,1,2,2-Tetrachloroethane	ug/g	0.05	ND	ND	ND	0.040	7972932
Tetrachloroethylene	ug/g	2.3	ND	ND	ND	0.040	7972932
Toluene	ug/g	6	ND	ND	ND	0.020	7972932
1,1,1-Trichloroethane	ug/g	3.4	ND	ND	ND	0.040	7972932
1,1,2-Trichloroethane	ug/g	0.05	ND	ND	ND	0.040	7972932
Trichloroethylene	ug/g	0.52	ND	ND	ND	0.010	7972932
Trichlorofluoromethane (FREON 11)	ug/g	5.8	ND	ND	ND	0.040	7972932
Vinyl Chloride	ug/g	0.022	ND	ND	ND	0.019	7972932
p+m-Xylene	ug/g	-	ND	ND	ND	0.020	7972932
o-Xylene	ug/g	-	ND	ND	ND	0.020	7972932
Total Xylenes	ug/g	25	ND	ND	ND	0.020	7972932
F1 (C6-C10)	ug/g	65	ND	ND	ND	10	7972932
F1 (C6-C10) - BTEX	ug/g	65	ND	ND	ND	10	7972932
F2-F4 Hydrocarbons			•	•	•	•	
F2 (C10-C16 Hydrocarbons)	ug/g	150	ND	ND	ND	10	7976835
F3 (C16-C34 Hydrocarbons)	ug/g	1300	73	ND	ND	50	7976835
F4 (C34-C50 Hydrocarbons)	ug/g	5600	ND	ND	87	50	7976835
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes		7976835
Surrogate Recovery (%)	•		•	•	•		
o-Terphenyl	%	-	91	89	89		7976835
4-Bromofluorobenzene	%	-	96	97	97		7972932
No Fill No Exceedance				•	•		
Grey Exceeds 1 criteria	policy/l	evel					
Black Exceeds both crite							
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended	April 15	, 2011)					
Table 2: Full Depth Generic Site Conditio	n Standa	ards in a I			n		
Soil - Residential/Parkland/Institutional	Property	use - Me	eaium and Fine	lextured Soll			

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 14 of 23

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID				SMS948	SMS949	SMS951				
Sampling Data				2022/04/28	2022/04/28	2022/04/28				
Sampling Date				09:15	09:50	10:50				
COC Number				873633-06-01	873633-06-01	873633-06-01				
		UNITS	Criteria	BH103-SS2	BH103-SS4	BH104-SS2	RDL	QC Batch		
D10-o-Xylene		%	-	84	92	92		7972932		
D4-1,2-Dichloroetha	ne	%	-	103	102	103		7972932		
D8-Toluene		%	-	99	100	98		7972932		
No Fill	No Exceedance									
Grey	Exceeds 1 criteria	policy/le	evel							
Black	Exceeds both crite	ria/leve	ls							
RDL = Reportable De	tection Limit									
QC Batch = Quality C	ontrol Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition										
Soil - Residential/Par	kland/Institutional P	roperty	Use - Me	edium and Fine	Textured Soil					

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD E, OAKVILLESampler Initials: TD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7972932	4-Bromofluorobenzene	2022/05/03	100	60 - 140	101	60 - 140	100	%		
7972932	D10-o-Xylene	2022/05/03	100	60 - 130	103	60 - 130	110	%		
7972932	D4-1,2-Dichloroethane	2022/05/03	102	60 - 140	104	60 - 140	101	%		
7972932	D8-Toluene	2022/05/03	102	60 - 140	99	60 - 140	99	%		
7974492	D10-Anthracene	2022/05/05	98	50 - 130	93	50 - 130	100	%		
7974492	D14-Terphenyl (FS)	2022/05/05	96	50 - 130	93	50 - 130	87	%		
7974492	D8-Acenaphthylene	2022/05/05	90	50 - 130	92	50 - 130	93	%		
7976835	o-Terphenyl	2022/05/05	90	60 - 130	87	60 - 130	88	%		
7971056	Moisture	2022/05/02							0	20
7971521	Moisture	2022/05/02							4.1	20
7972932	1,1,1,2-Tetrachloroethane	2022/05/03	92	60 - 140	94	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,1,1-Trichloroethane	2022/05/03	95	60 - 140	99	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,1,2,2-Tetrachloroethane	2022/05/03	90	60 - 140	93	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,1,2-Trichloroethane	2022/05/03	99	60 - 140	101	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,1-Dichloroethane	2022/05/03	88	60 - 140	92	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,1-Dichloroethylene	2022/05/03	93	60 - 140	97	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,2-Dichlorobenzene	2022/05/03	94	60 - 140	94	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,2-Dichloroethane	2022/05/03	90	60 - 140	97	60 - 130	ND, RDL=0.049	ug/g	NC	50
7972932	1,2-Dichloropropane	2022/05/03	88	60 - 140	93	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,3-Dichlorobenzene	2022/05/03	93	60 - 140	93	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	1,4-Dichlorobenzene	2022/05/03	109	60 - 140	109	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Acetone (2-Propanone)	2022/05/03	92	60 - 140	102	60 - 140	ND, RDL=0.49	ug/g	NC	50
7972932	Benzene	2022/05/03	85	60 - 140	89	60 - 130	ND, RDL=0.0060	ug/g	NC	50
7972932	Bromodichloromethane	2022/05/03	93	60 - 140	98	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Bromoform	2022/05/03	85	60 - 140	89	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Bromomethane	2022/05/03	93	60 - 140	95	60 - 140	ND, RDL=0.040	ug/g	NC	50
7972932	Carbon Tetrachloride	2022/05/03	92	60 - 140	96	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Chlorobenzene	2022/05/03	94	60 - 140	95	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Chloroform	2022/05/03	91	60 - 140	96	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	cis-1,2-Dichloroethylene	2022/05/03	91	60 - 140	95	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	cis-1,3-Dichloropropene	2022/05/03	85	60 - 140	86	60 - 130	ND, RDL=0.030	ug/g	NC	50

Page 17 of 23

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD E, OAKVILLESampler Initials: TD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7972932	Dibromochloromethane	2022/05/03	88	60 - 140	91	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Dichlorodifluoromethane (FREON 12)	2022/05/03	81	60 - 140	88	60 - 140	ND, RDL=0.040	ug/g	NC	50
7972932	Ethylbenzene	2022/05/03	90	60 - 140	90	60 - 130	ND, RDL=0.010	ug/g	NC	50
7972932	Ethylene Dibromide	2022/05/03	89	60 - 140	93	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	F1 (C6-C10) - BTEX	2022/05/03					ND, RDL=10	ug/g	NC	30
7972932	F1 (C6-C10)	2022/05/03	90	60 - 140	97	80 - 120	ND, RDL=10	ug/g	NC	30
7972932	Hexane	2022/05/03	88	60 - 140	96	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Methyl Ethyl Ketone (2-Butanone)	2022/05/03	94	60 - 140	104	60 - 140	ND, RDL=0.40	ug/g	NC	50
7972932	Methyl Isobutyl Ketone	2022/05/03	85	60 - 140	92	60 - 130	ND, RDL=0.40	ug/g	NC	50
7972932	Methyl t-butyl ether (MTBE)	2022/05/03	84	60 - 140	90	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Methylene Chloride(Dichloromethane)	2022/05/03	94	60 - 140	101	60 - 130	ND, RDL=0.049	ug/g	NC	50
7972932	o-Xylene	2022/05/03	89	60 - 140	89	60 - 130	ND, RDL=0.020	ug/g	NC	50
7972932	p+m-Xylene	2022/05/03	94	60 - 140	94	60 - 130	ND, RDL=0.020	ug/g	NC	50
7972932	Styrene	2022/05/03	94	60 - 140	95	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Tetrachloroethylene	2022/05/03	92	60 - 140	93	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Toluene	2022/05/03	85	60 - 140	86	60 - 130	ND, RDL=0.020	ug/g	NC	50
7972932	Total Xylenes	2022/05/03					ND, RDL=0.020	ug/g	NC	50
7972932	trans-1,2-Dichloroethylene	2022/05/03	94	60 - 140	97	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	trans-1,3-Dichloropropene	2022/05/03	91	60 - 140	89	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Trichloroethylene	2022/05/03	97	60 - 140	102	60 - 130	ND, RDL=0.010	ug/g	NC	50
7972932	Trichlorofluoromethane (FREON 11)	2022/05/03	98	60 - 140	103	60 - 130	ND, RDL=0.040	ug/g	NC	50
7972932	Vinyl Chloride	2022/05/03	89	60 - 140	93	60 - 130	ND, RDL=0.019	ug/g	NC	50
7974492	1-Methylnaphthalene	2022/05/05	95	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	2-Methylnaphthalene	2022/05/05	95	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Acenaphthene	2022/05/05	93	50 - 130	93	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Acenaphthylene	2022/05/05	88	50 - 130	91	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Anthracene	2022/05/05	96	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Benzo(a)anthracene	2022/05/05	98	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Benzo(a)pyrene	2022/05/05	86	50 - 130	84	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Benzo(b/j)fluoranthene	2022/05/05	95	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Benzo(g,h,i)perylene	2022/05/05	99	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Page 18 of 23

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD E, OAKVILLESampler Initials: TD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7974492	Benzo(k)fluoranthene	2022/05/05	97	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Chrysene	2022/05/05	100	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Dibenzo(a,h)anthracene	2022/05/05	93	50 - 130	87	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Fluoranthene	2022/05/05	98	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Fluorene	2022/05/05	103	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Indeno(1,2,3-cd)pyrene	2022/05/05	103	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Naphthalene	2022/05/05	80	50 - 130	86	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Phenanthrene	2022/05/05	97	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974492	Pyrene	2022/05/05	98	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
7974513	Hot Water Ext. Boron (B)	2022/05/04	117	75 - 125	104	75 - 125	ND, RDL=0.050	ug/g	NC	40
7974615	WAD Cyanide (Free)	2022/05/04	95	75 - 125	101	80 - 120	ND, RDL=0.01	ug/g	NC	35
7974623	Acid Extractable Antimony (Sb)	2022/05/04	98	75 - 125	102	80 - 120	ND, RDL=0.20	ug/g	NC	30
7974623	Acid Extractable Arsenic (As)	2022/05/04	99	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	8.5	30
7974623	Acid Extractable Barium (Ba)	2022/05/04	98	75 - 125	97	80 - 120	ND, RDL=0.50	ug/g	0.022	30
7974623	Acid Extractable Beryllium (Be)	2022/05/04	104	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	4.3	30
7974623	Acid Extractable Boron (B)	2022/05/04	98	75 - 125	96	80 - 120	ND, RDL=5.0	ug/g	NC	30
7974623	Acid Extractable Cadmium (Cd)	2022/05/04	99	75 - 125	99	80 - 120	ND, RDL=0.10	ug/g	5.6	30
7974623	Acid Extractable Chromium (Cr)	2022/05/04	111	75 - 125	104	80 - 120	ND, RDL=1.0	ug/g	8.3	30
7974623	Acid Extractable Cobalt (Co)	2022/05/04	100	75 - 125	102	80 - 120	ND, RDL=0.10	ug/g	3.7	30
7974623	Acid Extractable Copper (Cu)	2022/05/04	96	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	4.3	30
7974623	Acid Extractable Lead (Pb)	2022/05/04	NC	75 - 125	101	80 - 120	ND, RDL=1.0	ug/g	28	30
7974623	Acid Extractable Mercury (Hg)	2022/05/04	85	75 - 125	88	80 - 120	ND, RDL=0.050	ug/g	NC	30
7974623	Acid Extractable Molybdenum (Mo)	2022/05/04	105	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	0.55	30
7974623	Acid Extractable Nickel (Ni)	2022/05/04	99	75 - 125	103	80 - 120	ND, RDL=0.50	ug/g	4.2	30
7974623	Acid Extractable Selenium (Se)	2022/05/04	101	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	NC	30
7974623	Acid Extractable Silver (Ag)	2022/05/04	104	75 - 125	103	80 - 120	ND, RDL=0.20	ug/g	NC	30
7974623	Acid Extractable Thallium (TI)	2022/05/04	100	75 - 125	101	80 - 120	ND, RDL=0.050	ug/g	18	30
7974623	Acid Extractable Uranium (U)	2022/05/04	102	75 - 125	100	80 - 120	ND, RDL=0.050	ug/g	0.89	30
7974623	Acid Extractable Vanadium (V)	2022/05/04	103	75 - 125	100	80 - 120	ND, RDL=5.0	ug/g	6.7	30
7974623	Acid Extractable Zinc (Zn)	2022/05/04	NC	75 - 125	103	80 - 120	ND, RDL=5.0	ug/g	5.6	30
7974973	Chromium (VI)	2022/05/04	81	70 - 130	91	80 - 120	ND, RDL=0.18	ug/g	NC	35

Page 19 of 23

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD E, OAKVILLESampler Initials: TD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7975079	Conductivity	2022/05/04			100	90 - 110	ND, RDL=0.002	mS/cm	0.43	10
7975656	Available (CaCl2) pH	2022/05/04			100	97 - 103			0.051	N/A
7975723	Conductivity	2022/05/04			100	90 - 110	ND, RDL=0.002	mS/cm	2.1	10
7975867	Conductivity	2022/05/04			99	90 - 110	ND, RDL=0.002	mS/cm	2.2	10
7975923	Chromium (VI)	2022/05/04	83	70 - 130	91	80 - 120	ND, RDL=0.18	ug/g	NC	35
7976835	F2 (C10-C16 Hydrocarbons)	2022/05/05	98	60 - 130	93	80 - 120	ND, RDL=10	ug/g	NC	30
7976835	F3 (C16-C34 Hydrocarbons)	2022/05/05	106	60 - 130	98	80 - 120	ND, RDL=50	ug/g	NC	30
7976835	F4 (C34-C50 Hydrocarbons)	2022/05/05	110	60 - 130	100	80 - 120	ND, RDL=50	ug/g	NC	30
7977053	WAD Cyanide (Free)	2022/05/05	74 (1)	75 - 125	95	80 - 120	ND, RDL=0.01	ug/g	NC	35
7977284	Acid Extractable Antimony (Sb)	2022/05/05	86	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	NC	30
7977284	Acid Extractable Arsenic (As)	2022/05/05	92	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	1.0	30
7977284	Acid Extractable Barium (Ba)	2022/05/05	NC	75 - 125	97	80 - 120	ND, RDL=0.50	ug/g	0.62	30
7977284	Acid Extractable Beryllium (Be)	2022/05/05	93	75 - 125	99	80 - 120	ND, RDL=0.20	ug/g	7.3	30
7977284	Acid Extractable Boron (B)	2022/05/05	82	75 - 125	96	80 - 120	ND, RDL=5.0	ug/g	12	30
7977284	Acid Extractable Cadmium (Cd)	2022/05/05	91	75 - 125	98	80 - 120	ND, RDL=0.10	ug/g	17	30
7977284	Acid Extractable Chromium (Cr)	2022/05/05	98	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	4.0	30
7977284	Acid Extractable Cobalt (Co)	2022/05/05	92	75 - 125	101	80 - 120	ND, RDL=0.10	ug/g	0.59	30
7977284	Acid Extractable Copper (Cu)	2022/05/05	88	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	1.5	30
7977284	Acid Extractable Lead (Pb)	2022/05/05	90	75 - 125	101	80 - 120	ND, RDL=1.0	ug/g	2.7	30
7977284	Acid Extractable Mercury (Hg)	2022/05/05	79	75 - 125	88	80 - 120	ND, RDL=0.050	ug/g		
7977284	Acid Extractable Molybdenum (Mo)	2022/05/05	93	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	5.6	30
7977284	Acid Extractable Nickel (Ni)	2022/05/05	89	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	1.7	30
7977284	Acid Extractable Selenium (Se)	2022/05/05	91	75 - 125	103	80 - 120	ND, RDL=0.50	ug/g	NC	30
7977284	Acid Extractable Silver (Ag)	2022/05/05	91	75 - 125	99	80 - 120	ND, RDL=0.20	ug/g	NC	30
7977284	Acid Extractable Thallium (Tl)	2022/05/05	92	75 - 125	103	80 - 120	ND, RDL=0.050	ug/g	5.3	30
7977284	Acid Extractable Uranium (U)	2022/05/05	93	75 - 125	102	80 - 120	ND, RDL=0.050	ug/g	1.0	30
7977284	Acid Extractable Vanadium (V)	2022/05/05	NC	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g	1.7	30
7977284	Acid Extractable Zinc (Zn)	2022/05/05	NC	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g	0.11	30

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD E, OAKVILLE Sampler Initials: TD

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7977381	Available (CaCl2) pH	2022/05/05			100	97 - 103			0.32	N/A
N/A = Not Ap	plicable			· · · · · · · · · · · · · · · · · · ·	·					
Duplicate: Pa	pired analysis of a separate portion of the same sample	Isod to ovaluato t	ho varianco in t	ho moscurom	ont					

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall guality control for this analysis meets acceptability criteria.

Page 21 of 23

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
BH102-SS1	SMS945-01	Sodium Adsorption Ratio	5.0	9.5		N/A			
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory guidelines	5.								

Your Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Your C.O.C. #: 879318-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/05/30 Report #: R7144880 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D7032 Received: 2022/05/19, 18:19

Sample Matrix: Water # Samples Received: 7

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	6	N/A	2022/05/25		EPA 8260C m
1,3-Dichloropropene Sum	1	N/A	2022/05/27		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1)	7	2022/05/25	2022/05/25	CAM SOP-00316	CCME PHC-CWS m
Volatile Organic Compounds and F1 PHCs	6	N/A	2022/05/22	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2022/05/27	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 13

Your Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Your C.O.C. #: 879318-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/05/30 Report #: R7144880 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D7032 Received: 2022/05/19, 18:19

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		SRE880	SRE881	SRE882			SRE882		
Sampling Date		2022/05/19	2022/05/19	2022/05/19			2022/05/19		
		15:10	14:55	14:45			14:45		
COC Number		879318-01-01	879318-01-01	879318-01-01			879318-01-01		
	UNITS	BH/MW1	BH/MW2	BH/MW8	RDL	QC Batch	BH/MW8 Lab-Dup	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	ND	0.50	8006565			
Volatile Organics			•						
Acetone (2-Propanone)	ug/L	ND	ND	ND	10	8007738			
Benzene	ug/L	ND	ND	ND	0.17	8007738			
Bromodichloromethane	ug/L	ND	ND	ND	0.50	8007738			
Bromoform	ug/L	ND	ND	ND	1.0	8007738			
Bromomethane	ug/L	ND	ND	ND	0.50	8007738			
Carbon Tetrachloride	ug/L	ND	ND	ND	0.20	8007738			
Chlorobenzene	ug/L	ND	ND	ND	0.20	8007738			
Chloroform	ug/L	ND	ND	ND	0.20	8007738			
Dibromochloromethane	ug/L	ND	ND	ND	0.50	8007738			
1,2-Dichlorobenzene	ug/L	ND	ND	ND	0.50	8007738			
1,3-Dichlorobenzene	ug/L	ND	ND	ND	0.50	8007738			
1,4-Dichlorobenzene	ug/L	ND	ND	ND	0.50	8007738			
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	ND	1.0	8007738			
1,1-Dichloroethane	ug/L	ND	ND	ND	0.20	8007738			
1,2-Dichloroethane	ug/L	ND	ND	ND	0.50	8007738			
1,1-Dichloroethylene	ug/L	ND	ND	ND	0.20	8007738			
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.50	8007738			
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.50	8007738			
1,2-Dichloropropane	ug/L	ND	ND	ND	0.20	8007738			
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	0.30	8007738			
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	0.40	8007738			
Ethylbenzene	ug/L	ND	ND	ND	0.20	8007738			
Ethylene Dibromide	ug/L	ND	ND	ND	0.20	8007738			
Hexane	ug/L	ND	ND	ND	1.0	8007738			
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	2.0	8007738			
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	10	8007738			
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	5.0	8007738			
RDL = Reportable Detection Limit OC Batch = Quality Control Batch									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		SRE880	SRE881	SRE882			SRE882		
Sampling Date		2022/05/19	2022/05/19	2022/05/19			2022/05/19		
		15:10	14:55	14:45			14:45		
COC Number		879318-01-01	879318-01-01	879318-01-01			879318-01-01		
	UNITS	BH/MW1	BH/MW2	BH/MW8	RDL	QC Batch	BH/MW8 Lab-Dup	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	0.50	8007738			
Styrene	ug/L	ND	ND	ND	0.50	8007738			
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	0.50	8007738			
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	0.50	8007738			
Tetrachloroethylene	ug/L	ND	ND	ND	0.20	8007738			
Toluene	ug/L	ND	ND	ND	0.20	8007738			
1,1,1-Trichloroethane	ug/L	ND	ND	ND	0.20	8007738			
1,1,2-Trichloroethane	ug/L	ND	ND	ND	0.50	8007738			
Trichloroethylene	ug/L	ND	ND	ND	0.20	8007738			
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	ND	0.50	8007738			
Vinyl Chloride	ug/L	ND	ND	ND	0.20	8007738			
p+m-Xylene	ug/L	ND	ND	ND	0.20	8007738			
o-Xylene	ug/L	ND	ND	ND	0.20	8007738			
Total Xylenes	ug/L	ND	ND	ND	0.20	8007738			
F1 (C6-C10)	ug/L	ND	ND	ND	25	8007738			
F1 (C6-C10) - BTEX	ug/L	ND	ND	ND	25	8007738			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	ND	100	8012840	ND	100	8012840
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	ND	200	8012840	ND	200	8012840
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	ND	200	8012840	ND	200	8012840
Reached Baseline at C50	ug/L	Yes	Yes	Yes		8012840	Yes		8012840
Surrogate Recovery (%)									
o-Terphenyl	%	102	101	100		8012840	102		8012840
4-Bromofluorobenzene	%	84	82	83		8007738			
D4-1,2-Dichloroethane	%	128	129	128		8007738			
D8-Toluene	%	91	91	91		8007738			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		SRE883		SRE884	SRE885	SRE886		
Sampling Date		2022/05/19 14:25		2022/05/19 14:25	2022/05/19 14:35	2022/05/19		
COC Number		879318-01-01		879318-01-01	879318-01-01	879318-01-01		
	UNITS	BH/MW101	QC Batch	BH/MW103	DUP080	TRIP BLANK	RDL	QC Batc
Calculated Parameters							•	
1,3-Dichloropropene (cis+trans)	ug/L	ND	8006565	ND	ND	ND	0.50	8006565
Volatile Organics		I				I		
Acetone (2-Propanone)	ug/L	ND	8009471	ND	ND	ND	10	8007738
Benzene	ug/L	ND	8009471	ND	ND	ND	0.17	8007738
Bromodichloromethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Bromoform	ug/L	ND	8009471	ND	ND	ND	1.0	8007738
Bromomethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Carbon Tetrachloride	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Chlorobenzene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Chloroform	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Dibromochloromethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,2-Dichlorobenzene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,3-Dichlorobenzene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,4-Dichlorobenzene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Dichlorodifluoromethane (FREON 12)	ug/L	ND	8009471	ND	ND	ND	1.0	8007738
1,1-Dichloroethane	ug/L	1.3	8009471	0.33	ND	ND	0.20	8007738
1,2-Dichloroethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,1-Dichloroethylene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
cis-1,2-Dichloroethylene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
trans-1,2-Dichloroethylene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,2-Dichloropropane	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
cis-1,3-Dichloropropene	ug/L	ND	8009471	ND	ND	ND	0.30	8007738
trans-1,3-Dichloropropene	ug/L	ND	8009471	ND	ND	ND	0.40	8007738
Ethylbenzene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Ethylene Dibromide	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Hexane	ug/L	ND	8009471	ND	ND	ND	1.0	8007738
Methylene Chloride(Dichloromethane)	ug/L	ND	8009471	ND	ND	ND	2.0	8007738
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	8009471	ND	ND	ND	10	8007738
Methyl Isobutyl Ketone	ug/L	ND	8009471	ND	ND	ND	5.0	8007738
Methyl t-butyl ether (MTBE)	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
RDL = Reportable Detection Limit	•	•	•			•		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		SRE883		SRE884	SRE885	SRE886		
Sampling Date		2022/05/19		2022/05/19	2022/05/19	2022/05/19		
		14:25		14:25	14:35	2022/03/19		
COC Number		879318-01-01		879318-01-01	879318-01-01	879318-01-01		
	UNITS	BH/MW101	QC Batch	BH/MW103	DUP080	TRIP BLANK	RDL	QC Batch
Styrene	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,1,1,2-Tetrachloroethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
1,1,2,2-Tetrachloroethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Tetrachloroethylene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Toluene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
1,1,1-Trichloroethane	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
1,1,2-Trichloroethane	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Trichloroethylene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Trichlorofluoromethane (FREON 11)	ug/L	ND	8009471	ND	ND	ND	0.50	8007738
Vinyl Chloride	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
p+m-Xylene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
o-Xylene	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
Total Xylenes	ug/L	ND	8009471	ND	ND	ND	0.20	8007738
F1 (C6-C10)	ug/L	ND	8009471	ND	ND	ND	25	8007738
F1 (C6-C10) - BTEX	ug/L	ND	8009471	ND	ND	ND	25	8007738
F2-F4 Hydrocarbons	•	•						
F2 (C10-C16 Hydrocarbons)	ug/L	ND	8012840	ND	ND	ND	100	8012840
F3 (C16-C34 Hydrocarbons)	ug/L	ND	8012840	ND	ND	ND	200	8012840
F4 (C34-C50 Hydrocarbons)	ug/L	ND	8012840	ND	ND	ND	200	8012840
Reached Baseline at C50	ug/L	Yes	8012840	Yes	Yes	Yes		8012840
Surrogate Recovery (%)								
o-Terphenyl	%	99	8012840	101	100	101		8012840
4-Bromofluorobenzene	%	99	8009471	83	83	83		8007738
D4-1,2-Dichloroethane	%	100	8009471	130	130	129		8007738
D8-Toluene	%	93	8009471	89	89	90		8007738

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 15.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Sampler Initials: MV

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8007738	4-Bromofluorobenzene	2022/05/22	92	70 - 130	94	70 - 130	88	%		
8007738	D4-1,2-Dichloroethane	2022/05/22	121	70 - 130	116	70 - 130	119	%		
8007738	D8-Toluene	2022/05/22	101	70 - 130	101	70 - 130	92	%		
8009471	4-Bromofluorobenzene	2022/05/27	104	70 - 130	101	70 - 130	99	%		
8009471	D4-1,2-Dichloroethane	2022/05/27	103	70 - 130	98	70 - 130	95	%		
8009471	D8-Toluene	2022/05/27	99	70 - 130	99	70 - 130	94	%		
8012840	o-Terphenyl	2022/05/25	106	60 - 130	103	60 - 130	103	%		
8007738	1,1,1,2-Tetrachloroethane	2022/05/22	106	70 - 130	105	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,1,1-Trichloroethane	2022/05/22	112	70 - 130	112	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	1,1,2,2-Tetrachloroethane	2022/05/22	108	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,1,2-Trichloroethane	2022/05/22	118	70 - 130	113	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,1-Dichloroethane	2022/05/22	110	70 - 130	108	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	1,1-Dichloroethylene	2022/05/22	111	70 - 130	111	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	1,2-Dichlorobenzene	2022/05/22	95	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,2-Dichloroethane	2022/05/22	119	70 - 130	114	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,2-Dichloropropane	2022/05/22	109	70 - 130	107	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	1,3-Dichlorobenzene	2022/05/22	93	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	1,4-Dichlorobenzene	2022/05/22	105	70 - 130	107	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Acetone (2-Propanone)	2022/05/22	117	60 - 140	110	60 - 140	ND, RDL=10	ug/L	NC	30
8007738	Benzene	2022/05/22	106	70 - 130	105	70 - 130	ND, RDL=0.17	ug/L	NC	30
8007738	Bromodichloromethane	2022/05/22	117	70 - 130	114	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Bromoform	2022/05/22	104	70 - 130	101	70 - 130	ND, RDL=1.0	ug/L	NC	30
8007738	Bromomethane	2022/05/22	113	60 - 140	107	60 - 140	ND, RDL=0.50	ug/L	NC	30
8007738	Carbon Tetrachloride	2022/05/22	112	70 - 130	113	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Chlorobenzene	2022/05/22	100	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Chloroform	2022/05/22	117	70 - 130	115	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	cis-1,2-Dichloroethylene	2022/05/22	116	70 - 130	114	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	cis-1,3-Dichloropropene	2022/05/22	77	70 - 130	71	70 - 130	ND, RDL=0.30	ug/L	NC	30
8007738	Dibromochloromethane	2022/05/22	104	70 - 130	102	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Dichlorodifluoromethane (FREON 12)	2022/05/22	91	60 - 140	91	60 - 140	ND, RDL=1.0	ug/L	NC	30
8007738	Ethylbenzene	2022/05/22	82	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30

Page 8 of 13

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Sampler Initials: MV

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8007738	Ethylene Dibromide	2022/05/22	106	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	F1 (C6-C10) - BTEX	2022/05/22					ND, RDL=25	ug/L	NC	30
8007738	F1 (C6-C10)	2022/05/22	78	60 - 140	88	60 - 140	ND, RDL=25	ug/L	NC	30
8007738	Hexane	2022/05/22	106	70 - 130	106	70 - 130	ND, RDL=1.0	ug/L	NC	30
8007738	Methyl Ethyl Ketone (2-Butanone)	2022/05/22	106	60 - 140	101	60 - 140	ND, RDL=10	ug/L	NC	30
8007738	Methyl Isobutyl Ketone	2022/05/22	102	70 - 130	101	70 - 130	ND, RDL=5.0	ug/L	NC	30
8007738	Methyl t-butyl ether (MTBE)	2022/05/22	88	70 - 130	88	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Methylene Chloride(Dichloromethane)	2022/05/22	123	70 - 130	120	70 - 130	ND, RDL=2.0	ug/L	NC	30
8007738	o-Xylene	2022/05/22	82	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	p+m-Xylene	2022/05/22	82	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Styrene	2022/05/22	84	70 - 130	92	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Tetrachloroethylene	2022/05/22	97	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Toluene	2022/05/22	93	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Total Xylenes	2022/05/22					ND, RDL=0.20	ug/L	NC	30
8007738	trans-1,2-Dichloroethylene	2022/05/22	114	70 - 130	115	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	trans-1,3-Dichloropropene	2022/05/22	77	70 - 130	68 (1)	70 - 130	ND, RDL=0.40	ug/L	NC	30
8007738	Trichloroethylene	2022/05/22	114	70 - 130	115	70 - 130	ND, RDL=0.20	ug/L	NC	30
8007738	Trichlorofluoromethane (FREON 11)	2022/05/22	120	70 - 130	119	70 - 130	ND, RDL=0.50	ug/L	NC	30
8007738	Vinyl Chloride	2022/05/22	106	70 - 130	107	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	1,1,1,2-Tetrachloroethane	2022/05/27	106	70 - 130	106	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,1,1-Trichloroethane	2022/05/27	104	70 - 130	103	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	1,1,2,2-Tetrachloroethane	2022/05/27	100	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,1,2-Trichloroethane	2022/05/27	96	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,1-Dichloroethane	2022/05/27	95	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	1,1-Dichloroethylene	2022/05/27	94	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	1,2-Dichlorobenzene	2022/05/27	93	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,2-Dichloroethane	2022/05/27	97	70 - 130	92	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,2-Dichloropropane	2022/05/27	97	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	1,3-Dichlorobenzene	2022/05/27	93	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	1,4-Dichlorobenzene	2022/05/27	105	70 - 130	110	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Acetone (2-Propanone)	2022/05/27	103	60 - 140	96	60 - 140	ND, RDL=10	ug/L	NC	30

Page 9 of 13

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Sampler Initials: MV

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8009471	Benzene	2022/05/27	96	70 - 130	95	70 - 130	ND, RDL=0.17	ug/L	NC	30
8009471	Bromodichloromethane	2022/05/27	105	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Bromoform	2022/05/27	112	70 - 130	110	70 - 130	ND, RDL=1.0	ug/L	NC	30
8009471	Bromomethane	2022/05/27	113	60 - 140	115	60 - 140	ND, RDL=0.50	ug/L	NC	30
8009471	Carbon Tetrachloride	2022/05/27	104	70 - 130	104	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Chlorobenzene	2022/05/27	98	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Chloroform	2022/05/27	103	70 - 130	102	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	cis-1,2-Dichloroethylene	2022/05/27	107	70 - 130	106	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	cis-1,3-Dichloropropene	2022/05/27	99	70 - 130	98	70 - 130	ND, RDL=0.30	ug/L	NC	30
8009471	Dibromochloromethane	2022/05/27	111	70 - 130	109	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Dichlorodifluoromethane (FREON 12)	2022/05/27	85	60 - 140	89	60 - 140	ND, RDL=1.0	ug/L	NC	30
8009471	Ethylbenzene	2022/05/27	82	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Ethylene Dibromide	2022/05/27	105	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	F1 (C6-C10) - BTEX	2022/05/27					ND, RDL=25	ug/L	NC	30
8009471	F1 (C6-C10)	2022/05/27	91	60 - 140	94	60 - 140	ND, RDL=25	ug/L	NC	30
8009471	Hexane	2022/05/27	91	70 - 130	94	70 - 130	ND, RDL=1.0	ug/L	NC	30
8009471	Methyl Ethyl Ketone (2-Butanone)	2022/05/27	109	60 - 140	102	60 - 140	ND, RDL=10	ug/L	NC	30
8009471	Methyl Isobutyl Ketone	2022/05/27	95	70 - 130	93	70 - 130	ND, RDL=5.0	ug/L	NC	30
8009471	Methyl t-butyl ether (MTBE)	2022/05/27	91	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Methylene Chloride(Dichloromethane)	2022/05/27	113	70 - 130	109	70 - 130	ND, RDL=2.0	ug/L	NC	30
8009471	o-Xylene	2022/05/27	84	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	p+m-Xylene	2022/05/27	85	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Styrene	2022/05/27	99	70 - 130	103	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Tetrachloroethylene	2022/05/27	100	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Toluene	2022/05/27	89	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Total Xylenes	2022/05/27					ND, RDL=0.20	ug/L	NC	30
8009471	trans-1,2-Dichloroethylene	2022/05/27	105	70 - 130	106	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	trans-1,3-Dichloropropene	2022/05/27	99	70 - 130	100	70 - 130	ND, RDL=0.40	ug/L	NC	30
8009471	Trichloroethylene	2022/05/27	116	70 - 130	113	70 - 130	ND, RDL=0.20	ug/L	NC	30
8009471	Trichlorofluoromethane (FREON 11)	2022/05/27	104	70 - 130	106	70 - 130	ND, RDL=0.50	ug/L	NC	30
8009471	Vinyl Chloride	2022/05/27	95	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30

Page 10 of 13

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 South Service Road EastSampler Initials: MV

			Matrix S		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8012840	F2 (C10-C16 Hydrocarbons)	2022/05/25	113	60 - 130	105	60 - 130	ND, RDL=100	ug/L	NC	30
8012840	F3 (C16-C34 Hydrocarbons)	2022/05/25	112	60 - 130	106	60 - 130	ND, RDL=200	ug/L	NC	30
8012840	F4 (C34-C50 Hydrocarbons)	2022/05/25	114	60 - 130	107	60 - 130	ND, RDL=200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 South Service Road EastSampler Initials: MV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 South Service Road East Sampler Initials: MV

Exceedance Summary Table – Reg153/04 T2-Soil/Res-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
No Exceedances									
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory g	guidelines.								

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD EAST Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/06/02 Report #: R7148796 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E1652 Received: 2022/05/25, 17:50

Sample Matrix: Soil

Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2022/05/27	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2022/05/30	2022/06/01	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	1	2022/06/01	2022/06/01	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2022/05/31	2022/05/31	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2022/06/01	2022/06/01	CAM SOP-00436	EPA 3060/7199 m
Acid Extractable Metals by ICPMS	1	2022/05/30	2022/06/01	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2022/05/26	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2022/05/26	2022/05/27	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	1	2022/06/01	2022/06/01	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2022/06/01	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 11

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD EAST Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/06/02 Report #: R7148796 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E1652 Received: 2022/05/25, 17:50

(1) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 11 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			SSF298			SSF298		
Sampling Date			2022/04/27			2022/04/27		
			10:30			10:30		
COC Number			n/a			n/a		
	UNITS	Criteria	DUP1014	RDL	QC Batch	DUP1014 Lab-Dup	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	5.0	0.94		8014189			
Inorganics								
Conductivity	mS/cm	0.7	0.15	0.002	8023873			
Moisture	%	-	9.4	1.0	8015800			
Available (CaCl2) pH	рН	-	7.94		8026915			
WAD Cyanide (Free)	ug/g	0.051	ND	0.01	8026279			
Chromium (VI)	ug/g	10	ND	0.18	8026396			
Metals								
Hot Water Ext. Boron (B)	ug/g	1.5	0.54	0.050	8021732	0.53	0.050	8021732
Acid Extractable Antimony (Sb)	ug/g	7.5	0.60	0.20	8021982			
Acid Extractable Arsenic (As)	ug/g	18	7.5	1.0	8021982			
Acid Extractable Barium (Ba)	ug/g	390	70	0.50	8021982			
Acid Extractable Beryllium (Be)	ug/g	5	1.0	0.20	8021982			
Acid Extractable Boron (B)	ug/g	120	20	5.0	8021982			
Acid Extractable Cadmium (Cd)	ug/g	1.2	ND	0.10	8021982			
Acid Extractable Chromium (Cr)	ug/g	160	27	1.0	8021982			
Acid Extractable Cobalt (Co)	ug/g	22	15	0.10	8021982			
Acid Extractable Copper (Cu)	ug/g	180	81	0.50	8021982			
Acid Extractable Lead (Pb)	ug/g	120	8.4	1.0	8021982			
Acid Extractable Molybdenum (Mo)	ug/g	6.9	2.7	0.50	8021982			
Acid Extractable Nickel (Ni)	ug/g	130	35	0.50	8021982			
Acid Extractable Selenium (Se)	ug/g	2.4	ND	0.50	8021982			
Acid Extractable Silver (Ag)	ug/g	25	ND	0.20	8021982			
Acid Extractable Thallium (Tl)	ug/g	1	0.10	0.050	8021982			
Acid Extractable Uranium (U)	ug/g	23	0.89	0.050	8021982			
Acid Extractable Vanadium (V)	ug/g	86	34	5.0	8021982			
No Fill No Exceedance								
Grey Exceeds 1 criter	ia policy,	/level						
Black Exceeds both cr	iteria/lev	/els						
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplic	cate							
Criteria: Ontario Reg. 153/04 (Amend								
Table 2: Full Depth Generic Site Cond Soil - Residential/Parkland/Institution						ion		

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 11

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				SSF298			SSF298		
Sampling Data				2022/04/27			2022/04/27		
Sampling Date				10:30			10:30		
COC Number				n/a			n/a		
		UNITS	Criteria	DUP1014	RDL	QC Batch	DUP1014 Lab-Dup	RDL	QC Batch
Acid Extractable Zi	nc (Zn)	ug/g	340	68	5.0	8021982			
Acid Extractable M	ercury (Hg)	ug/g	1.8	ND	0.050	8021982			
No Fill	No Exceedance	-							
Grey	Exceeds 1 criter	ia policy,	/level						
Black	Exceeds both cr	iteria/lev	vels						
RDL = Reportable [Detection Limit								
QC Batch = Quality	Control Batch								
Lab-Dup = Laborat	ory Initiated Duplic	ate							
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil									
ND = Not Detected	l at a concentratior	n equal o	r greater	than the indic	cated D	etection Li	mit.		

O.REG 153 PAHS (SOIL)

Bureau Verita	as ID			SSF299					
Sampling Dat	e			2022/04/28					
				09:00					
COC Number				n/a					
		UNITS	Criteria	DUP1031	RDL	QC Batch			
Inorganics									
Moisture		%	-	3.7	1.0	8016372			
Calculated Pa	arameters								
Methylnapht	halene, 2-(1-)	ug/g	-	ND	0.0071	8015135			
Polyaromatic	Hydrocarbons								
Acenaphthen	e	ug/g	29	ND	0.0050	8016781			
Acenaphthyle	ene	ug/g	0.17	ND	0.0050	8016781			
Anthracene		ug/g	0.74	ND	0.0050	8016781			
Benzo(a)anth	racene	ug/g	0.63	ND	0.0050	8016781			
Benzo(a)pyre	ne	ug/g	0.3	ND	0.0050	8016781			
Benzo(b/j)flu	oranthene	ug/g	0.78	ND	0.0050	8016781			
Benzo(g,h,i)p	erylene	ug/g	7.8	ND	0.0050	8016781			
Benzo(k)fluor	anthene	ug/g	0.78	ND	0.0050	8016781			
Chrysene		ug/g	7.8	ND	0.0050	8016781			
Dibenzo(a,h)a	anthracene	ug/g	0.1	ND	0.0050	8016781			
Fluoranthene	1	ug/g	0.69	ND	0.0050	8016781			
Fluorene		ug/g	69	ND	0.0050	8016781			
Indeno(1,2,3-	cd)pyrene	ug/g	0.48	ND	0.0050	8016781			
1-Methylnapl	hthalene	ug/g	3.4	ND	0.0050	8016781			
2-Methylnapl	hthalene	ug/g	3.4	ND	0.0050	8016781			
Naphthalene		ug/g	0.75	ND	0.0050	8016781			
Phenanthren	e	ug/g	7.8	ND	0.0050	8016781			
Pyrene		ug/g	78	ND	0.0050	8016781			
Surrogate Re	covery (%)		-						
D10-Anthrace	ene	%	-	102		8016781			
No Fill	No Exceedanc	е							
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both	criteria/	levels						
RDL = Report	able Detection L	imit							
	uality Control Ba								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil									
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.									

Bureau Verit	as ID			SSF299					
Sampling Da	te			2022/04/28					
				09:00					
COC Numbe	r			n/a					
	UNITS	Criteria	DUP1031	RDL	QC Batch				
D14-Terpher	iyl (FS)	%	-	86		8016781			
D8-Acenaph	thylene	%	-	55		8016781			
No Fill	No Exceedance								
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both	criteria/	levels						
RDL = Report	able Detection L	imit							
QC Batch = C	Quality Control Ba	atch							
Criteria: Onta	ario Reg. 153/04	(Amend	led April :	15, 2011)					
Table 2: Full	Depth Generic Si	te Cond	ition Stan	dards in a Pot	able Gro	ound			
Water Condition									
Soil - Residential/Parkland/Institutional Property Use - Medium and Fine									
Textured Soil									

O.REG 153 PAHS (SOIL)

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 9.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD EASTSampler Initials: KK

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8016781	D10-Anthracene	2022/05/27	104	50 - 130	105	50 - 130	114	%		
8016781	D14-Terphenyl (FS)	2022/05/27	95	50 - 130	94	50 - 130	93	%		
8016781	D8-Acenaphthylene	2022/05/27	81	50 - 130	88	50 - 130	53	%		
8015800	Moisture	2022/05/26							0.70	20
8016372	Moisture	2022/05/26							3.1	20
8016781	1-Methylnaphthalene	2022/05/27	83	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	2-Methylnaphthalene	2022/05/27	73	50 - 130	87	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Acenaphthene	2022/05/27	95	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Acenaphthylene	2022/05/27	92	50 - 130	92	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Anthracene	2022/05/27	106	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Benzo(a)anthracene	2022/05/27	104	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Benzo(a)pyrene	2022/05/27	87	50 - 130	85	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Benzo(b/j)fluoranthene	2022/05/27	106	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Benzo(g,h,i)perylene	2022/05/27	103	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Benzo(k)fluoranthene	2022/05/27	91	50 - 130	88	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Chrysene	2022/05/27	102	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Dibenzo(a,h)anthracene	2022/05/27	83	50 - 130	87	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Fluoranthene	2022/05/27	106	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Fluorene	2022/05/27	98	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Indeno(1,2,3-cd)pyrene	2022/05/27	100	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Naphthalene	2022/05/27	54	50 - 130	80	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Phenanthrene	2022/05/27	98	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8016781	Pyrene	2022/05/27	109	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8021732	Hot Water Ext. Boron (B)	2022/06/01	108	75 - 125	105	75 - 125	ND, RDL=0.050	ug/g	2.6	40
8021982	Acid Extractable Antimony (Sb)	2022/06/01	97	75 - 125	106	80 - 120	ND, RDL=0.20	ug/g		
8021982	Acid Extractable Arsenic (As)	2022/06/01	101	75 - 125	104	80 - 120	ND, RDL=1.0	ug/g		
8021982	Acid Extractable Barium (Ba)	2022/06/01	NC	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g		
8021982	Acid Extractable Beryllium (Be)	2022/06/01	99	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g		
8021982	Acid Extractable Boron (B)	2022/06/01	93	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g		
8021982	Acid Extractable Cadmium (Cd)	2022/06/01	100	75 - 125	103	80 - 120	ND, RDL=0.10	ug/g		
8021982	Acid Extractable Chromium (Cr)	2022/06/01	99	75 - 125	102	80 - 120	ND, RDL=1.0	ug/g		

Page 8 of 11

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD EASTSampler Initials: KK

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8021982	Acid Extractable Cobalt (Co)	2022/06/01	101	75 - 125	101	80 - 120	ND, RDL=0.10	ug/g		
8021982	Acid Extractable Copper (Cu)	2022/06/01	100	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g		
8021982	Acid Extractable Lead (Pb)	2022/06/01	99	75 - 125	102	80 - 120	ND, RDL=1.0	ug/g		
8021982	Acid Extractable Mercury (Hg)	2022/06/01	95	75 - 125	96	80 - 120	ND, RDL=0.050	ug/g	NC	30
8021982	Acid Extractable Molybdenum (Mo)	2022/06/01	101	75 - 125	104	80 - 120	ND, RDL=0.50	ug/g		
8021982	Acid Extractable Nickel (Ni)	2022/06/01	103	75 - 125	102	80 - 120	ND, RDL=0.50	ug/g		
8021982	Acid Extractable Selenium (Se)	2022/06/01	101	75 - 125	104	80 - 120	ND, RDL=0.50	ug/g		
8021982	Acid Extractable Silver (Ag)	2022/06/01	98	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g		
8021982	Acid Extractable Thallium (TI)	2022/06/01	100	75 - 125	103	80 - 120	ND, RDL=0.050	ug/g		
8021982	Acid Extractable Uranium (U)	2022/06/01	97	75 - 125	100	80 - 120	ND, RDL=0.050	ug/g		
8021982	Acid Extractable Vanadium (V)	2022/06/01	99	75 - 125	102	80 - 120	ND, RDL=5.0	ug/g		
8021982	Acid Extractable Zinc (Zn)	2022/06/01	NC	75 - 125	104	80 - 120	ND, RDL=5.0	ug/g		
8023873	Conductivity	2022/05/31			101	90 - 110	ND, RDL=0.002	mS/cm	0.15	10
8026279	WAD Cyanide (Free)	2022/06/01	94	75 - 125	94	80 - 120	ND, RDL=0.01	ug/g	NC	35
8026396	Chromium (VI)	2022/06/01	72	70 - 130	90	80 - 120	ND, RDL=0.18	ug/g	NC	35
8026915	Available (CaCl2) pH	2022/06/01			100	97 - 103			0.56	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	ary table is for information purp	oses only and should no	t be considered a compreh	nensive listing or	statement of	conformance to
applicable regulatory g	guidelines.					

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD EAST Your C.O.C. #: N/A

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/07/20 Report #: R7218169 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2D5438 Received: 2022/05/18, 18:48

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2022/05/25	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	1	N/A	2022/05/26	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	3	2022/05/24	2022/05/24	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	3	2022/05/24	2022/05/24	CAM SOP-00457	OMOE E3015 m
Conductivity	4	2022/05/24	2022/05/24	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	3	2022/05/24	2022/05/25	CAM SOP-00436	EPA 3060/7199 m
Acid Extractable Metals by ICPMS	3	2022/05/21	2022/05/25	CAM SOP-00447	EPA 6020B m
Moisture	3	N/A	2022/05/19	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2022/05/24	2022/05/24	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	1	2022/05/25	2022/05/25	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	3	2022/05/25	2022/05/25	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	4	N/A	2022/05/26	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 12

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD EAST Your C.O.C. #: N/A

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/07/20 Report #: R7218169 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2D5438 Received: 2022/05/18, 18:48

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 12 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			SQW477	SQW479	SQW480		
Sampling Date			2022/05/11	2022/05/09	2022/05/09		
			10:30	10:15	11:00		
COC Number			N/A	N/A	N/A		
	UNITS	Criteria	BH105-SS2	BH204-SS1	BH205-SS1	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	5.0	2.8	1.2	0.78		8004309
Inorganics							
Conductivity	mS/cm	0.7	0.27	0.38	0.54	0.002	8010865
Moisture	%	-	16	16	19	1.0	8004973
Available (CaCl2) pH	pН	-	7.69	7.64	7.59		8013017
WAD Cyanide (Free)	ug/g	0.051	ND	ND	ND	0.01	8010464
Chromium (VI)	ug/g	10	ND	ND	ND	0.18	8010550
Metals							
Hot Water Ext. Boron (B)	ug/g	1.5	0.43	0.64	0.73	0.050	8010435
Acid Extractable Antimony (Sb)	ug/g	7.5	ND	0.84	0.47	0.20	8009229
Acid Extractable Arsenic (As)	ug/g	18	4.8	9.8	5.6	1.0	8009229
Acid Extractable Barium (Ba)	ug/g	390	100	110	100	0.50	8009229
Acid Extractable Beryllium (Be)	ug/g	5	0.75	0.75	0.64	0.20	8009229
Acid Extractable Boron (B)	ug/g	120	17	9.8	8.8	5.0	8009229
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.14	0.32	0.33	0.10	8009229
Acid Extractable Chromium (Cr)	ug/g	160	41	24	23	1.0	8009229
Acid Extractable Cobalt (Co)	ug/g	22	20	9.5	8.1	0.10	8009229
Acid Extractable Copper (Cu)	ug/g	180	48	55	46	0.50	8009229
Acid Extractable Lead (Pb)	ug/g	120	10	41	37	1.0	8009229
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.62	1.3	1.3	0.50	8009229
Acid Extractable Nickel (Ni)	ug/g	130	43	21	18	0.50	8009229
Acid Extractable Selenium (Se)	ug/g	2.4	ND	ND	ND	0.50	8009229
Acid Extractable Silver (Ag)	ug/g	25	ND	0.20	ND	0.20	8009229
Acid Extractable Thallium (TI)	ug/g	1	0.18	0.11	0.11	0.050	8009229
Acid Extractable Uranium (U)	ug/g	23	0.70	1.4	1.1	0.050	8009229
Acid Extractable Vanadium (V)	ug/g	86	65	29	26	5.0	8009229
Acid Extractable Zinc (Zn)	ug/g	340	59	100	110	5.0	8009229
No Fill No Exceedance							

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Grey

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 12

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID	SQW479	SQW480							
Someling Data				2022/05/11	2022/05/09	2022/05/09			
Sampling Date				10:30	10:15	11:00			
COC Number				N/A	N/A	N/A			
		UNITS	Criteria	BH105-SS2	BH204-SS1	BH205-SS1	RDL	QC Batch	
Acid Extractable M	ercury (Hg)	ug/g	1.8	ND	ND	ND	0.050	8009229	
No Fill	No Exceedance								
Grey	Exceeds 1 criteria	a policy/	level						
Black	Exceeds both crit	eria/lev	els						
RDL = Reportable D	Detection Limit								
QC Batch = Quality	Control Batch								
Criteria: Ontario Re	eg. 153/04 (Amend	ed April	15, 2011))					
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition									
Soil - Residential/P	arkland/Institution	al Prope	rty Use - I	Medium and I	Fine Textured	Soil			
ND = Not Detected	at a concentration	equal o	r greater	than the indic	cated Detectio	on Limit.			

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			SQW477	SQW479		SQW480		
Sampling Date			2022/05/11	2022/05/09		2022/05/09		
Samping Date			10:30	10:15		11:00		
COC Number			N/A	N/A		N/A		
	UNITS	Criteria	BH105-SS2	BH204-SS1	QC Batch	BH205-SS1	RDL	QC Batch
Calculated Paramete	ers							
Methylnaphthalene,	2-(1-) ug/g	-	ND	0.024	8004306	ND	0.0071	8004306
Polyaromatic Hydrod	arbons	•			•			
Acenaphthene	ug/g	29	ND	ND	8010397	ND	0.0050	8013093
Acenaphthylene	ug/g	0.17	ND	ND	8010397	ND	0.0050	8013093
Anthracene	ug/g	0.74	ND	0.015	8010397	0.0058	0.0050	8013093
Benzo(a)anthracene	ug/g	0.63	ND	0.052	8010397	0.024	0.0050	8013093
Benzo(a)pyrene	ug/g	0.3	ND	0.054	8010397	0.024	0.0050	8013093
Benzo(b/j)fluoranthe	ne ug/g	0.78	0.0070	0.083	8010397	0.035	0.0050	8013093
Benzo(g,h,i)perylene	ug/g	7.8	ND	0.046	8010397	0.018	0.0050	8013093
Benzo(k)fluoranthen	e ug/g	0.78	ND	0.027	8010397	0.012	0.0050	8013093
Chrysene	ug/g	7.8	ND	0.049	8010397	0.021	0.0050	8013093
Dibenzo(a,h)anthrace	ene ug/g	0.1	ND	0.0089	8010397	ND	0.0050	8013093
Fluoranthene	ug/g	0.69	ND	0.12	8010397	0.058	0.0050	8013093
Fluorene	ug/g	69	ND	ND	8010397	ND	0.0050	8013093
Indeno(1,2,3-cd)pyre	ne ug/g	0.48	ND	0.040	8010397	0.018	0.0050	8013093
1-Methylnaphthalen	e ug/g	3.4	ND	0.012	8010397	ND	0.0050	8013093
2-Methylnaphthalen	e ug/g	3.4	ND	0.012	8010397	ND	0.0050	8013093
Naphthalene	ug/g	0.75	ND	0.0087	8010397	ND	0.0050	8013093
Phenanthrene	ug/g	7.8	ND	0.070	8010397	0.029	0.0050	8013093
Pyrene	ug/g	78	ND	0.10	8010397	0.045	0.0050	8013093
Surrogate Recovery	(%)							
D10-Anthracene	%	-	103	100	8010397	84		8013093
D14-Terphenyl (FS)	%	-	91	92	8010397	10397 85		8013093
D8-Acenaphthylene	%	-	81	84	8010397	84		8013093
No Fill	No Exceedance							

Grey Exceeds 1 cr

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

RESULTS OF ANALYSES OF SOIL

Bureau Verit	as ID			SQW478			
Sampling Dat	te			2022/05/03 09:00			
COC Number				N/A			
		UNITS	Criteria	BH201-SS1	RDL	QC Batch	
Calculated Pa	arameters						
Sodium Adso	rption Ratio	N/A	5.0	7.8		8004309	
Inorganics							
Conductivity		mS/cm	0.7	0.71	0.002	8010865	
No Fill	No Exceedance	e					
Grey	Exceeds 1 crite	eria polic	y/level				
Black	Exceeds both o	criteria/l	evels				
RDL = Report	able Detection L	imit					
QC Batch = Q	uality Control Ba	atch					
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)							
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground							
Water Condition							
Soil - Residen	itial/Parkland/Ins	stitution	al Propert	ty Use - Mediu	um and	Fine	
Textured Soil							

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to th	ree cooler temperatures taken at receipt					
	Package 1	7.7°C						
Revised	Revised report: Sample IDs revised as per client request.							

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD EASTSampler Initials: KK

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8010397	D10-Anthracene	2022/05/24	99	50 - 130	99	50 - 130	114	%		
8010397	D14-Terphenyl (FS)	2022/05/24	89	50 - 130	90	50 - 130	93	%		
8010397	D8-Acenaphthylene	2022/05/24	85	50 - 130	88	50 - 130	83	%		
8013093	D10-Anthracene	2022/05/25	90	50 - 130	86	50 - 130	89	%		
8013093	D14-Terphenyl (FS)	2022/05/25	89	50 - 130	84	50 - 130	85	%		
8013093	D8-Acenaphthylene	2022/05/25	89	50 - 130	88	50 - 130	93	%		
8004973	Moisture	2022/05/19							4.7	20
8009229	Acid Extractable Antimony (Sb)	2022/05/25	101	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	3.6	30
8009229	Acid Extractable Arsenic (As)	2022/05/25	113	75 - 125	101	80 - 120	ND, RDL=1.0	ug/g	0.84	30
8009229	Acid Extractable Barium (Ba)	2022/05/25	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	3.4	30
8009229	Acid Extractable Beryllium (Be)	2022/05/25	121	75 - 125	104	80 - 120	ND, RDL=0.20	ug/g	7.7	30
8009229	Acid Extractable Boron (B)	2022/05/25	104	75 - 125	96	80 - 120	ND, RDL=5.0	ug/g	2.3	30
8009229	Acid Extractable Cadmium (Cd)	2022/05/25	113	75 - 125	98	80 - 120	ND, RDL=0.10	ug/g	5.6	30
8009229	Acid Extractable Chromium (Cr)	2022/05/25	125	75 - 125	101	80 - 120	ND, RDL=1.0	ug/g	4.3	30
8009229	Acid Extractable Cobalt (Co)	2022/05/25	120	75 - 125	101	80 - 120	ND, RDL=0.10	ug/g	6.9	30
8009229	Acid Extractable Copper (Cu)	2022/05/25	119	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	3.8	30
8009229	Acid Extractable Lead (Pb)	2022/05/25	NC	75 - 125	102	80 - 120	ND, RDL=1.0	ug/g	4.3	30
8009229	Acid Extractable Mercury (Hg)	2022/05/25	104	75 - 125	97	80 - 120	ND, RDL=0.050	ug/g	NC	30
8009229	Acid Extractable Molybdenum (Mo)	2022/05/25	114	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	NC	30
8009229	Acid Extractable Nickel (Ni)	2022/05/25	129 (1)	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	3.5	30
8009229	Acid Extractable Selenium (Se)	2022/05/25	111	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	NC	30
8009229	Acid Extractable Silver (Ag)	2022/05/25	114	75 - 125	99	80 - 120	ND, RDL=0.20	ug/g	NC	30
8009229	Acid Extractable Thallium (TI)	2022/05/25	114	75 - 125	104	80 - 120	ND, RDL=0.050	ug/g	6.4	30
8009229	Acid Extractable Uranium (U)	2022/05/25	114	75 - 125	101	80 - 120	ND, RDL=0.050	ug/g	11	30
8009229	Acid Extractable Vanadium (V)	2022/05/25	NC	75 - 125	102	80 - 120	ND, RDL=5.0	ug/g	2.8	30
8009229	Acid Extractable Zinc (Zn)	2022/05/25	NC	75 - 125	95	80 - 120	ND, RDL=5.0	ug/g	3.1	30
8010397	1-Methylnaphthalene	2022/05/24	101	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	2-Methylnaphthalene	2022/05/24	94	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Acenaphthene	2022/05/24	96	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Acenaphthylene	2022/05/24	93	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Anthracene	2022/05/24	101	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Page 8 of 12

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE ROAD EASTSampler Initials: KK

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8010397	Benzo(a)anthracene	2022/05/24	103	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Benzo(a)pyrene	2022/05/24	85	50 - 130	84	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Benzo(b/j)fluoranthene	2022/05/24	99	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Benzo(g,h,i)perylene	2022/05/24	98	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Benzo(k)fluoranthene	2022/05/24	90	50 - 130	88	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Chrysene	2022/05/24	98	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Dibenzo(a,h)anthracene	2022/05/24	90	50 - 130	78	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Fluoranthene	2022/05/24	101	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Fluorene	2022/05/24	97	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Indeno(1,2,3-cd)pyrene	2022/05/24	94	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Naphthalene	2022/05/24	90	50 - 130	92	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Phenanthrene	2022/05/24	95	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010397	Pyrene	2022/05/24	104	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8010435	Hot Water Ext. Boron (B)	2022/05/24	115	75 - 125	103	75 - 125	ND, RDL=0.050	ug/g	12	40
8010464	WAD Cyanide (Free)	2022/05/24	95	75 - 125	96	80 - 120	ND, RDL=0.01	ug/g	NC	35
8010550	Chromium (VI)	2022/05/25	81	70 - 130	92	80 - 120	ND, RDL=0.18	ug/g	NC	35
8010865	Conductivity	2022/05/24			99	90 - 110	ND, RDL=0.002	mS/cm	6.0	10
8013017	Available (CaCl2) pH	2022/05/25			100	97 - 103			0.18	N/A
8013093	1-Methylnaphthalene	2022/05/25	103	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	2-Methylnaphthalene	2022/05/25	98	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Acenaphthene	2022/05/25	100	50 - 130	93	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Acenaphthylene	2022/05/25	94	50 - 130	88	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Anthracene	2022/05/25	95	50 - 130	91	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Benzo(a)anthracene	2022/05/25	109	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Benzo(a)pyrene	2022/05/25	90	50 - 130	85	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Benzo(b/j)fluoranthene	2022/05/25	97	50 - 130	92	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Benzo(g,h,i)perylene	2022/05/25	104	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Benzo(k)fluoranthene	2022/05/25	95	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Chrysene	2022/05/25	102	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Dibenzo(a,h)anthracene	2022/05/25	100	50 - 130	90	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Fluoranthene	2022/05/25	104	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Page 9 of 12

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD EAST Sampler Initials: KK

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8013093	Fluorene	2022/05/25	97	50 - 130	89	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Indeno(1,2,3-cd)pyrene	2022/05/25	103	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Naphthalene	2022/05/25	82	50 - 130	82	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Phenanthrene	2022/05/25	96	50 - 130	90	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8013093	Pyrene	2022/05/25	101	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Sample heterogeneity suspected.

Page 10 of 12

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH201-SS1	SQW478-01	Conductivity	0.7	0.71	0.002	mS/cm
BH201-SS1	SQW478-01	Sodium Adsorption Ratio	5.0	7.8		N/A
The exceedance summary	y table is for information purp	oses only and should not be co	nsidered a compreh	ensive listing or	statement of	conformance to
applicable regulatory guid	delines.					

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD Your C.O.C. #: na

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/10/04 Report #: R7328043 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2S5361 Received: 2022/10/03, 10:33

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2022/10/04	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/10/03	2022/10/04	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD Your C.O.C. #: na

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/10/04 Report #: R7328043 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2S5361 Received: 2022/10/03, 10:33

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages:2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Bureau Veritas ID				TXA545				
Sampling Date				2022/10/03 08:30				
COC Number				na				
		UNITS	Criteria	MW1S	RDL	QC Batch		
BTEX & F1 Hydrocai	bons							
Benzene		ug/L	5.0	ND	0.20	8261574		
Toluene		ug/L	24	ND	0.20	8261574		
Ethylbenzene		ug/L	2.4	ND	0.20	8261574		
o-Xylene		ug/L	-	ND	0.20	8261574		
p+m-Xylene		ug/L	-	ND	0.40	8261574		
Total Xylenes		ug/L	300	ND	0.40	8261574		
F1 (C6-C10)		ug/L	750	ND	25	8261574		
F1 (C6-C10) - BTEX	ug/L	750	ND	25	8261574			
F2-F4 Hydrocarbons	;							
F2 (C10-C16 Hydroc	ug/L	150	ND	100	8262138			
F3 (C16-C34 Hydroc	ug/L	500	ND	200	8262138			
F4 (C34-C50 Hydroc	ug/L	500	ND	200	8262138			
Reached Baseline at	ug/L	-	Yes		8262138			
Surrogate Recovery	(%)							
1,4-Difluorobenzene	5	%	-	101		8261574		
4-Bromofluorobenz	ene	%	-	83		8261574		
D10-o-Xylene		%	-	94		8261574		
D4-1,2-Dichloroetha	ine	%	-	102		8261574		
o-Terphenyl		%	-	104		8262138		
No Fill No Ex	ceedanc	e						
Grey Excee	ds 1 crite	eria polio	cy/level					
	ds both d	criteria/l	evels					
RDL = Reportable De	etection L	imit						
, QC Batch = Quality (
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated								

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 16.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE ROAD Sampler Initials: KML

			Matrix	Spike	e SPIKED BLANK		Method B	lank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8261574	1,4-Difluorobenzene	2022/10/03	92	70 - 130	93	70 - 130	99	%		
8261574	4-Bromofluorobenzene	2022/10/03	115	70 - 130	112	70 - 130	82	%		
8261574	D10-o-Xylene	2022/10/03	103	70 - 130	114	70 - 130	90	%		
8261574	D4-1,2-Dichloroethane	2022/10/03	95	70 - 130	95	70 - 130	98	%		
8262138	o-Terphenyl	2022/10/04	114	60 - 130	119	60 - 130	116	%		
8261574	Benzene	2022/10/03	91	50 - 140	101	50 - 140	ND, RDL=0.20	ug/L	NC	30
8261574	Ethylbenzene	2022/10/03	102	50 - 140	113	50 - 140	ND, RDL=0.20	ug/L	NC	30
8261574	F1 (C6-C10) - BTEX	2022/10/03					ND, RDL=25	ug/L	NC	30
8261574	F1 (C6-C10)	2022/10/03	102	60 - 140	112	60 - 140	ND, RDL=25	ug/L	NC	30
8261574	o-Xylene	2022/10/03	101	50 - 140	112	50 - 140	ND, RDL=0.20	ug/L	NC	30
8261574	p+m-Xylene	2022/10/03	106	50 - 140	117	50 - 140	ND, RDL=0.40	ug/L	NC	30
8261574	Toluene	2022/10/03	90	50 - 140	101	50 - 140	ND, RDL=0.20	ug/L	NC	30
8261574	Total Xylenes	2022/10/03					ND, RDL=0.40	ug/L	NC	30
8262138	F2 (C10-C16 Hydrocarbons)	2022/10/04	104	60 - 130	109	60 - 130	ND, RDL=100	ug/L	NC	30
8262138	F3 (C16-C34 Hydrocarbons)	2022/10/04	108	60 - 130	116	60 - 130	ND, RDL=200	ug/L	NC	30
8262138	F4 (C34-C50 Hydrocarbons)	2022/10/04	114	60 - 130	122	60 - 130	ND, RDL=200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-GW-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	ary table is for information purp	oses only and should no	t be considered a compreh	nensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE RD E. Your C.O.C. #: 906279-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2022/11/11 Report #: R7384149 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2W6859 Received: 2022/11/08, 10:13

Sample Matrix: Water

Samples Received: 2

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Polychlorinated Biphenyl in Water	2 2022/11/1	0 2022/11/1	1 CAM SOP-00309	EPA 8082A m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-457B Site Location: 166 SOUTH SERVICE RD E. Your C.O.C. #: 906279-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/11/11 Report #: R7384149 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2W6859 Received: 2022/11/08, 10:13

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 155 PCD3 (WATER)									
Bureau Veritas	ID			UFW592	UFW593				
Sampling Date				2022/11/08 08:20	2022/11/08 08:20				
COC Number				906279-01-01	906279-01-01				
		UNITS	Criteria	MW1S	DUP1S0	RDL	QC Batch		
PCBs									
Aroclor 1242		ug/L	-	ND	ND	0.05	8338544		
Aroclor 1248		ug/L	-	ND	ND	0.05	8338544		
Aroclor 1254	ug/L	-	ND	ND 0.05		8338544			
Aroclor 1260	ug/L	-	ND	ND	0.05	8338544			
Total PCB	ug/L	3.0	ND	ND	0.05	8338544			
Surrogate Reco	very (%)				-				
Decachlorobiphenyl		%	-	83	87		8338544		
No Fill	No Exceeda	nce							
Grey	Exceeds 1 c	riteria p	olicy/leve	el					
Black	Exceeds bot	h criter	ia/levels						
RDL = Reportab	le Detection L	imit							
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil									
ND = Not Detec	ted at a conce	ntration	n equal o	r greater than th	ne indicated Det	tectior	n Limit.		

O.REG 153 PCBS (WATER)

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-457BSite Location: 166 SOUTH SERVICE RD E.Sampler Initials: KML

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8338544	Decachlorobiphenyl	2022/11/10	91	60 - 130	87	60 - 130	78	%		
8338544	Aroclor 1242	2022/11/10					ND, RDL=0.05	ug/L		
8338544	Aroclor 1248	2022/11/10					ND, RDL=0.05	ug/L		
8338544	Aroclor 1254	2022/11/10					ND, RDL=0.05	ug/L		
8338544	Aroclor 1260	2022/11/10	100	60 - 130	93	60 - 130	ND, RDL=0.05	ug/L		
8338544	Total PCB	2022/11/11	100	60 - 130	93	60 - 130	ND, RDL=0.05	ug/L	NC	40
Duplicate: Pa	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.									
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been a	dded. Used to e	valuate samp	e matrix interfe	erence.				

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-GW-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	ary table is for information purp	oses only and should no	ot be considered a compret	nensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					